Literature Review Crop Modeling and Introduction a Simple Crop Model
##plugins.themes.academic_pro.article.main##
Abstract
Modeling science has been applied by many advanced countries in many fields, such as geology, meteorology, climate change, crop productivity, environment, erosion, and landslide. The crop model simulates the processes of agriculture. The writing of this article is descriptive qualitative using the Systematic Literature Review (SLR) method. So far, each model has its advantages and disadvantages but generally is based on the physiology of the growth and development of crops in relationship with soil, climate, solar radiation energy, and limiting factors to plant growth. There have been many models for rice that can forecast yield and biomass or predict future climate change dynamics. Meanwhile, many models such as DSSAT, AquaCrop, Oryza, APSIM, EPIC need more data to operate their modeling, which in many cases, data is not readily available. In this review, we would like to introduce the model “SIMPLE” which includes only thirteen parameters and four of which describe cultivar characteristics. Another advantage of “SIMPLE” is that it can be adapted for many crop species and added variable modules such as nutrient dynamics, water stress, temperature stress, or pests. It is entirely open source based on R programming, but limitations still exist that have been mentioned in the review.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Ahmed, M., & Ahmad, S. (2020). Systems modeling. In Systems modeling (pp. 1-44): Springer.
- Akinbile, C. O. (2020). Crop water requirements, biomass and grain yields estimation for upland rice using CROPWAT, AQUACROP and CERES simulation models. Agricultural Engineering International: CIGR Journal, 22(2), 1-20. https://cigrjournal.org/index.php/Ejounral/article/view/5636/3287
- Alderman, P. D. (2020). A comprehensive R interface for the DSSAT Cropping Systems Model. Computers and electronics in agriculture, 172, 105325. https://doi.org/10.1016/j.compag.2020.105325
- Antle, J. M., Jones, J. W., & Rosenzweig, C. E. (2017). Next generation agricultural system data, models and knowledge products: Introduction. Agricultural Systems, 155, 186-190. https://doi.org/10.1016/j.agsy.2016.09.003
- Asseng, S., Zhu, Y., Basso, B., Wilson, T., & Cammarano, D. (2014). Simulation Modeling: Applications in Cropping Systems. In N. K. Van Alfen (Ed.), Encyclopedia of Agriculture and Food Systems (pp. 102-112). Oxford: Academic Press.
- Bado, V. B., Djaman, K., & Mel, V. C. (2018). Developing fertilizer recommendations for rice in Sub-Saharan Africa, achievements and opportunities. Paddy and Water Environment, 16(3), 571-586. https://doi.org/10.1007/s10333-018-0649-8
- Boote, K., Prasad, V., Allen Jr, L. H., Singh, P., & Jones, J. W. (2018a). Modeling sensitivity of grain yield to elevated temperature in the DSSAT crop models for peanut, soybean, dry bean, chickpea, sorghum, and millet. European Journal of Agronomy, 100, 99-109. https://doi.org/10.1016/j.eja.2017.09.002
- Boote, K. J., Jones, J. W., & Hoogenboom, G. (2018b). Simulation of crop growth: CROPGRO model. In Agricultural Systems modeting and Simulation (pp. 651-692): CRC Press.
- Bouman, B. A. M,, & Laar, H. H. V. (2006). Description and evaluation of the rice growth model ORYZA2000 under nitrogen-limited conditions. 87(3), 249-273. https://doi.org/10.1016/j.agsy.2004.09.011
- Chenu, K., Porter, J. R., Martre, P., Basso, B., Chapman, S. C., Ewert, F., Bindi, M., & Asseng, S. (2017). Contribution of Crop Models to Adaptation in Wheat. Trends in Plant Science, 22(6), 472-490. doi:https://doi.org/10.1016/j.tplants.2017.02.003
- Chisanga, C. B., Moombe, M., & Phiri, E. (2022). Modelling climate change impacts on maize. CABI Reviews. https://doi.org/10.1079/cabireviews202217008
- Gautam, D., & Subedi, B. (2022). Production and Trade Scenario of Major Underutilized Crops of Nepal. Journal of Applied Agricultural Science and Technology, 6(1), 71-84. https://doi.org/10.55043/jaast.v6i1.52.
- Eckstein, D., Künzel, V., & Schäfer, L. (2017). Global Climate Risk Index in 2018: Which countries will be hardest hit by extreme weather events?. Bonn: Germanwatch
- Eitzinger, A., Läderach, P., Rodriguez, B., Fisher, M., Beebe, S., Sonder, K., & Schmidt, A. (2017). Assessing high-impact spots of climate change: spatial yield simulations with Decision Support System for Agrotechnology Transfer (DSSAT) model. Mitigation and Adaptation Strategies for Global Change, 22(5), 743-760. https://doi.org/10.1007/s11027-015-9696-2
- Ewert, F., Rounsevell, M. D. A., Reginster, I., Metzger, M. J., & Leemans, R. (2005). Future scenarios of European agricultural land use: I. Estimating changes in crop productivity. Agriculture, Ecosystems & Environment, 107(2-3), 101-116. https://doi.org/10.1016/j.agee.2004.12.003
- Foster, T., Brozović, N., Butler, A. P., Neale, C. M. U., Raes, D., Steduto, P., Fereres, E., & Hsiao, T. C. (2017). AquaCrop-OS: An open source version of FAO's crop water productivity model. Agricultural Water Management, 181, 18-22. https://doi.org/10.1016/j.agwat.2016.11.015
- Gao, Y., Wallach, D., Hasegawa, T., Tang, L., Zhang, R., Asseng, S., …, & Hoogenboom, G. (2021). Evaluation of crop model prediction and uncertainty using Bayesian parameter estimation and Bayesian model averaging. Agricultural and Forest Meteorology, 311, 108686. https://doi.org/10.1016/j.agrformet.2021.108686
- Gaydon, D. S., Balwinder, S., Wang, E., Poulton, P. L., Ahmad, B., Ahmed, F., …, & Roth, C. H. (2017). Evaluation of the APSIM model in cropping systems of Asia. Field Crops Research, 204, 52-75. https://doi.org/10.1016/j.fcr.2016.12.015
- Hao, X., Gao, J., Han, X., Ma, Z., Merchant, A., Ju, H., …, & Lin, E. (2014). Effects of open-air elevated atmospheric CO2 concentration on yield quality of soybean (Glycine max (L.) Merr). Agriculture, Ecosystems & Environment, 192, 80-84. https://doi.org/10.1016/j.agee.2014.04.002
- Hoogenboom, G., Porter, C. H., Boote, K. J., Shelia, V., Wilkens, P. W., Singh, U., …, & Jones, J. W. (2019). The DSSAT crop modeling ecosystem. In Advances in crop modelling for a sustainable agriculture (pp. 173-216): Burleigh Dodds Science Publishing. https://www.taylorfrancis.com/books/mono/10.1201/9780429266591/advances-crop-modelling-sustainable-agriculture?refId=97d3e2d3-d931-4336-ab02-a54583c99ef9&context=ubx
- Huth, N. I., & Carberry, P. S. (2009). The APSIM Experience in Australia: From Research Model to Farmer Application. Modelling Agroforestry Systems, 41. https://repositorio.catie.ac.cr/bitstream/handle/11554/3146/Modelling_agroforestry_systems.pdf?sequence=1#page=42
- Izaurralde, R. C., McGill, W. B., Williams, J. R., Jones, C. D., Link, R. P., Manowitz, D. H., …, & Millar, N. (2017). Simulating microbial denitrification with EPIC: Model description and evaluation. Ecological Modelling, 359, 349-362. https://doi.org/10.1016/j.ecolmodel.2017.06.007
- Kadiyala, M. D. M., Jones, J. W., Mylavarapu, R. S., Li, Y. C., & Reddy, M. D. (2015). Identifying irrigation and nitrogen best management practices for aerobic rice–maize cropping system for semi-arid tropics using CERES-rice and maize models. Agricultural Water Management, 149, 23-32. https://doi.org/10.1016/j.agwat.2014.10.019
- Keating, B. A., Carberry, P. S., Hammer, G. L., Probert, M. E., Robertson, M. J., Holzworth, D., & Smith, C. J. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3-4), 267-288. https://doi.org/10.1016/S1161-0301(02)00108-9
- Kim, M., Ko, J., Jeong, S., Yeom, J.-m., & Kim, H.-o. (2017). Monitoring canopy growth and grain yield of paddy rice in South Korea by using the GRAMI model and high spatial resolution imagery. GIScience & Remote Sensing, 54(4), 534-551. https://doi.org/10.1080/15481603.2017.1291783
- Kivi, M. S., Blakely, B., Masters, M., Bernacchi, C. J., Miguez, F. E., & Dokoohaki, H. (2022). Development of a data-assimilation system to forecast agricultural systems: A case study of constraining soil water and soil nitrogen dynamics in the APSIM model. Science of The Total Environment, 820, 153192. doi:https://doi.org/10.1016/j.scitotenv.2022.153192
- Krishnan, P., Swain, D. K., Chandra Bhaskar, B., Nayak, S. K., & Dash, R. N. (2007). Impact of elevated CO2 and temperature on rice yield and methods of adaptation as evaluated by crop simulation studies. Agriculture, Ecosystems & Environment, 122(2), 233-242. doi:https://doi.org/10.1016/j.agee.2007.01.019
- Li, T., Angeles, O., Marcaida Iii, M., Manalo, E., Manalili, M. P., Radanielson, A.,& Mohanty, S. (2017). From ORYZA2000 to ORYZA (v3): An improved simulation model for rice in drought and nitrogen-deficient environments. Agricultural and Forest Meteorology, 237, 246-256. https://doi.org/10.1016/j.agrformet.2017.02.025
- Li, T., Hasegawa, T., Yin, X., Zhu, Y., Boote, K., Adam, M.,…, & Bouman, B. (2015). Uncertainties in predicting rice yield by current crop models under a wide range of climatic conditions. Glob Chang Biol, 21(3), 1328-1341. https://doi.org/10.1111/gcb.12758
- Liu, B., Asseng, S., Müller, C., Ewert, F., Elliott, J., Lobell, D. B.,…, & Zhu, Y. (2016). Similar estimates of temperature impacts on global wheat yield by three independent methods. Nature Climate Change, 6(12), 1130-1136. https://doi.org/10.1038/nclimate3115
- Liu, J., Huffman, T., Qian, B., Shang, J., Li, Q., Dong, T., ... & Jing, Q. (2020). Crop yield estimation in the Canadian Prairies using Terra/MODIS-derived crop metrics. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 2685-2697. https://ieeexplore.ieee.org/abstract/document/9103945/
- Lobell, D. B. (2007). Changes in diurnal temperature range and national cereal yields. Agricultural and Forest Meteorology, 145(3), 229-238. doi:https://doi.org/10.1016/j.agrformet.2007.05.002
- Lobell, D. B., & Asner, G. P. (2003). Climate and management contributions to recent trends in US agricultural yields. Science, 299(5609), 1032-1032. https://doi.org/10.1126/science.1078475
- Masikati, P., Manschadi, A., Rooyen, A. V., & Hargreaves, J. (2014). Maize–mucuna rotation: an alternative technology to improve water productivity in smallholder farming systems. Agricultural Systems, 123, 62-70. https://doi.org/10.1016/j.agsy.2013.09.003
- Menard, S. (2000). Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54(1), 17-24. https://doi.org/10.1080/00031305.2000.10474502
- Mengist, W., Soromessa, T., & Legese, G. (2020). Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX, 7, 100777. doi:https://doi.org/10.1016/j.mex.2019.100777
- Monteith, J. L. (1965). Light Distribution and Photosynthesis in Field Crops. Annals of Botany, 29(1), 17-37. https://doi.org/10.1093/oxfordjournals.aob.a083934
- Morris, M. D. (1991). Factorial sampling plans for preliminary computational experiments. Technometrics, 33(2), 161-174. https://doi.org/10.1080/00401706.1991.10484804
- Moser, C. M., & Barrett, C. B. (2006). The complex dynamics of smallholder technology adoption: the case of SRI in Madagascar. Agricultural economics, 35(3), 373-388. https://doi.org/10.1111/j.1574-0862.2006.00169.x
- Nantasaksiri, K., Charoen-Amornkitt, P., & Machimura, T. (2021). Land potential assessment of Napier grass plantation for power generation in Thailand using SWAT model. Model validation and parameter calibration. Energies, 14(5), 1326. https://doi.org/10.3390/en14051326
- Queiroz, D. M. d., Coelho, A. L. d. F., Valente, D. S. M., & Schueller, J. K. (2021). Sensors applied to Digital Agriculture: A review. Revista Ciência Agronômica, 51. https://doi.org/10.5935/1806-6690.20200086
- Williams, J. R, Jones, C. A., Kiniry, J. R., & Spanel, D. A. (1989). The EPIC Crop Growth Model. Transactions of the ASAE, 32(2), 497-0511. https://doi.org/10.13031/2013.31032
- Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). AquaCrop—the FAO crop model to simulate yield response to water: II. Main algorithms and software description. 101(3), 438-447. https://doi.org/10.2134/agronj2008.0140s
- Ramos, T. B., Simionesei, L., Jauch, E., Almeida, C., & Neves, R. (2017). Modelling soil water and maize growth dynamics influenced by shallow groundwater conditions in the Sorraia Valley region, Portugal. Agricultural Water Management, 185, 27-42. https://doi.org/10.1016/j.agwat.2017.02.007
- Rani, A., Bandyopadhyay, K. K., Krishnan, P., Sarangi, A., & Datta, S. P. (2020). Simulation of tillage, crop residue mulch and nitrogen interactions on yield and water use efficiency of wheat (Triticum aestivum) using DSSAT model. Indian Journal of Agricultural Sciences, 90(10), 1856-1864. https://www.researchgate.net/profile/Alka-Rani-3/publication/346935320_Simulation_of_tillage_crop_residue_mulch_and_nitrogen_interactions_on_yield_and_water_use_efficiency_of_wheat_Triticum_aestivum_using_DSSAT_model/links/5fd305b0299bf188d40b1259/Simulation-of-tillage-crop-residue-mulch-and-nitrogen-interactions-on-yield-and-water-use-efficiency-of-wheat-Triticum-aestivum-using-DSSAT-model.pdf
- Rauff, K. O., & Bello, R. (2015). A review of crop growth simulation models as tools for agricultural meteorology. Agricultural Sciences, 6(09), 1098. http://dx.doi.org/10.4236/as.2015.69105
- Sidhu, B. S., Mehrabi, Z., Kandlikar, M., & Ramankutty, N. (2022). On the relative importance of climatic and non-climatic factors in crop yield models. Climatic Change, 173(1-2), 8. https://doi.org/10.1007/s10584-022-03404-0
- Shirazi, S. Z., Mei, X., Liu, B., & Liu, Y. (2021). Assessment of the AquaCrop Model under different irrigation scenarios in the North China Plain. Agricultural Water Management, 257, 107120. https://doi.org/10.1016/j.agwat.2021.107120
- Snigdha, G. (2022). Rice yield estimation using remote sensing and crop simulation model in Nalgonda district, Telangana [Masters thesis]. Professor Jayashankar Telangana State Agricultural University. http://oar.icrisat.org/id/eprint/12010
- Teixeira, E. I., Fischer, G., Van Velthuizen, H., Walter, C., & Ewert, F. (2013). Global hot-spots of heat stress on agricultural crops due to climate change. Agricultural and Forest Meteorology, 170, 206-215. https://doi.org/10.1016/j.agrformet.2011.09.002
- Timsina, J., & Humphreys, E. (2006). Performance of CERES-Rice and CERES-Wheat models in rice–wheat systems: a review. Agricultural Systems, 90(1-3), 5-31. https://doi.org/10.1016/j.agsy.2005.11.007
- Todorovic, M., Milenkovic, L., Dimitrijevic, A., & Zoric, M. (2018). Education and training in crop models: The role of free software in a multi-disciplinary approach. Computers and electronics in agriculture, (149), 141-148.
- Thiele, J. C, & Nuske, R. S. (2015). Design and implementation of a web-based decision support system for climate change impact assessment on forests. Forstarchiv, 87, 11-23. https://doi.org/10.4432/0300-4112-87-11
- Jones, J. W., Tsuji, G. Y., Hoogenboom, G., Hunt, L. A., Thornton, P. K., Wilkens, P. W., Imamura, D. T., Bowen, W. T., & Singh, U.(2013). Decision support system for agrotechnology transfer: DSSAT V3. Understanding Options for Agricultural Production, 7, 157-177. Kluwer Academic Publishers.
- Uno, Y., Prasher, S. O., Lacroix, R., Goel, P. K., Karimi, Y., Viau, A., & Patel, R. M. (2005). Artificial neural networks to predict corn yield from Compact Airborne Spectrographic Imager data. Computers and electronics in agriculture, 47(2), 149-161. https://doi.org/10.1016/j.compag.2004.11.014
- Wallach, D., Palosuo, T., Thorburn, P., Hochman, Z., Gourdain, E., Andrianasolo, F., …, & Seidel, S. J. (2021). The chaos in calibrating crop models: Lessons learned from a multi-model calibration exercise. Environmental Modelling & Software, 145, 105206. https://doi.org/10.1016/j.envsoft.2021.105206
- Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., …, & McLean, G. (2002). Development of a generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 18(1-2), 121-140. https://doi.org/10.1016/S1161-0301(02)00100-4
- Wang, Q., Wu, J., Li, X., Zhou, H., Yang, J., Geng, G.,…, & Tang, Z. (2017). A comprehensively quantitative method of evaluating the impact of drought on crop yield using daily multi-scale SPEI and crop growth process model. International journal of biometeorology, 61(4), 685-699. https://doi.org/10.1007/s00484-016-1246-4
- Whitbread, A. M., Robertson, M. J, Carberry, P. S., & Dimes, J. P. (2010). How farming systems simulation can aid the development of more sustainable smallholder farming systems in southern Africa. European Journal of Agronomy, 32(1), 51-58. https://doi.org/10.1016/j.eja.2009.05.004
- Wnuk, A., Górny, A., Bocianowski, J., & Kozak, M. (2013). Visualizing harvest index in crops. Communications in Biometry and Crop Science, 8, 48–59. http://agrobiol.sggw.waw.pl/~cbcs/articles/CBCS_8_2_2.pdf
- Woli, P., Jones, J. W., Ingram, K. T., & Fraisse, C. W. (2012). Agricultural Reference Index for Drought (ARID). Agronomy Journal, 104(2), 287-300. doi:https://doi.org/10.2134/agronj2011.0286
- Xu, C., & Gertner, G. (2011). Understanding and comparisons of different sampling approaches for the Fourier Amplitudes Sensitivity Test (FAST). Computational Statistics & Data Analysis, 55(1), 184-198. doi:https://doi.org/10.1016/j.csda.2010.06.028
- Xu, J., Henry, A., & Sreenivasulu, N. (2020). Rice yield formation under high day and night temperatures—A prerequisite to ensure future food security. Plant, Cell & Environment, 43(7), 1595-1608. https://doi.org/10.1111/pce.13748
- Yang, X., Asseng, S., Wong, M. T. F., Yu, Q., Li, J., & Liu, E. (2013). Quantifying the interactive impacts of global dimming and warming on wheat yield and water use in China. Agricultural and Forest Meteorology, 182-183, 342-351. doi:https://doi.org/10.1016/j.agrformet.2013.07.006
- Yin, X., Struik, P. C., & Goudriaan, J. (2021). On the needs for combining physiological principles and mathematics to improve crop models. Field Crops Research, 271, 108254. https://doi.org/10.1016/j.fcr.2021.108254
- Yu, Q., & Cui, Y. (2022). Improvement and testing of ORYZA model water balance modules for alternate wetting and drying irrigation. Agricultural Water Management, 271, 107802. doi:https://doi.org/10.1016/j.agwat.2022.107802
- Yuliawan, T., & Handoko, I. (2016). The effect of temperature rise to rice crop yield in Indonesia uses Shierary Rice model with geographical information system (GIS) feature. Procedia Environmental Sciences, 33, 214-220. https://doi.org/10.1016/j.proenv.2016.03.072
- Zeybek, M. (2018). Nash-sutcliffe efficiency approach for quality improvement. J. Appl. Math. Comput, 2, 496-503. https://doi.org/10.26855/jamc.2018.11.001 https://www.hillpublisher.com/UpFile/201811/2018113059622393.pdf
- Zhao, C., Liu, B., Xiao, L., Hoogenboom, G., Boote, K. J., Kassie, B. T., …, & Asseng, S. (2019). A SIMPLE crop model. European Journal of Agronomy, 104, 97-106. https://doi.org/10.1016/j.eja.2019.01.009
- Zhen, X. (2022). Incorporating drought and marker associated traits into the DSSAT model. Doctoral dissertation, Auburn University