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Abstract. Surjan is a specific type of cropping system that is part of a local wisdom practice found 

in Kulonprogo Regency, Special Region of Yogyakarta. The cropping system employs a 

polyculture system with a raised-sunken bed configuration. In ancient times, this system was 

initiated as a conservation initiative in the event of drought. In the context of agroecosystems, 

defined as the interaction between biotic and abiotic components, arthropods serve as indicators 

of the biotic components of the agricultural environment. The presence of arthropods is influenced 

by the use of synthetic pesticides. In response to the use of synthetic pesticides, biopesticides are 

frequently used as a countermeasure. The present study aims to ascertain the impact of 

biopesticide applications on the composition of arthropods in agricultural land that utilizes surjan 

cropping system configuration. This study was conducted on the surjan cropping system in 

Kulonprogo Regency, which is predominantly characterized by the cultivation of rice and shallots. 

The biopesticide used in this study was a group of fungi, namely Trichoderma harzianum and 

Metarhizium anisopliae. These organisms function as bioprotectants and biofertilizers. The 

findings indicate that surjan cropping system, when accompanied by biopesticide utilization, yield 

a greater diversity of arthropod species in comparison to surjan cropping system that employs 

synthetic pesticides. In agricultural land with surjan system configuration and biopesticide 

applications, certain arthropods function as predators, parasitoids, and bioindicators. The most 

prevalent arthropod species identified is Verania sp. (Coleoptera; Coccinelidae), with a total of 

68 individuals. The present study has yielded findings indicating a correlation between the 

application of surjan cropping system and the utilization of biopesticides in land cultivated with a 

specificcrops and the composition of arthropods in the environment. 
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1. Introduction 

Surjan is a specific type of cropping system that is part of a local wisdom practice found in 

Kulonprogo Regency, Special Region of Yogyakarta. It involves polyculture of horticulture and 

food crops. The distinguishing characteristic of this cropping system is the configuration of the 
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soil media, which are designed to vary in elevation to accommodate different crops. In ancient 

times, this agricultural practice was employed to address irrigation problems during the dry season. 

In the contemporary era, its implementation is part of agroecosystem modification for the purpose 

of achieving sustainable land infrastructure [1]. The optimization of land resources is one part of 

conservation measures intended to counteract the occurrence of pests and diseases. Despite the 

implementation of surjan cropping system, farmers continue to rely on synthetic pesticides and 

fertilizers to protect their crops from pests and to increase plant growth. 

Agroecosystem modification is part of the implementation of sustainable agriculture [2]. A 

healthy agroecosystem is characterized by an abundance of arthropods. Arthropods are one of the 

indicators of environmental health when exposed to synthetic materials [3]. The abundance of 

arthropods in an ecosystem is an indication that the ecosystem is relatively uncontaminated. Apart 

from arthropod pests, there are also arthropod natural enemies: predators and parasitoids. 

Furthermore, arthropods play a vital role in ecosystems as pollinators, biodecomposers, and 

bioindicators [4–6]. The existence of arthropods is very important for the maintenance of 

ecosystem sustainability and the conservation of land resources, as well as the well-being of plants. 

The implementation of surjan cropping system, for example, involves the cultivation of insectary 

plants (refugia) along the boundaries between fields, serving as hosts for natural enemies and as 

an integrated pest management [7]. 

Currently, farmers continue to rely on synthetic pesticides for the management of pests and 

diseases. The utilization of synthetic pesticides has been demonstrated to exert harmful effects, 

including the killing of non-targets. This has the potential to jeopardize the diversity of natural 

enemies and predators, thereby exacerbating pest populations [8]. Pests may exhibit a heightened 

degree of resistance to pesticides over time, and attack rates may concomitantly rise [9,10]. A 

secondary impact is the deterioration of land quality, which can manifest in the form of degradation 

and a decline in soil fertility levels [11]. 

An alternative to synthetic pesticides is the utilization of beneficial microbes, such as 

Metarhizium anisopliae and Trichoderma harzianum. These two microbes are biological agents 

from the fungi group and have potential applications in pest and disease control [12,13]. Both fungi 

have mechanisms of action and entry that ensure their exclusive targeting of their intended hosts. 

The resulting secondary metabolites of these fungi play an important role as protectants and 

biostimulants [14], and the hormones produced can trigger plant growth. It is anticipated that, 

following a prolonged period of application, these fungi will proliferate in nature, thereby ensuring 

ample availability [15,16]. 

The extant literature on surjan cropping system is scant, with few studies having been 

conducted to date. The most recent study investigated the arthropod populations in polyculture 
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using surjan cropping system and in monoculture, revealing variations in arthropod abundance. 

The implementation of surjan cropping system has been demonstrated to result in a notable 

increase in the diversity and abundance of arthropod populations [17]. A study was conducted to 

compare the effects of conventional and surjan cropping systems on arthropod abundance. The 

results showed that surjan cropping system resulted in a higher abundance of arthropods compared 

to the conventional cropping system [18]. The application of conventional systems has led to the 

proliferation of pests such as Bactrocera sp. and Arigona sp. The utilization of surjan cropping 

system has been demonstrated to result in an increase in the abundance and diversity of arthropod 

natural enemies. In light of the aforementioned elaboration, the present study aims to ascertain the 

influence of the application of biopesticides derived from fungal active ingredients (M. anisopliae 

and T. harzianum) on arthropod diversity within agricultural environments configured using surjan 

cropping system. 

2. Materials and Methods 

2.1. Study area 

The study was conducted in an agricultural area with surjan cropping system configuration, 

located in Panjatan District, Kulonprogo Regency, Special Region of Yogyakarta. The area is 

located at coordinates -7.916343,110.1108008; -7.9063609,110.1711428 (Fig. 1). The study was 

conducted from April to November 2023, coinciding with the rice and shallot planting season. All 

farmers applied a simultaneous and uniform planting pattern. The treatments were administered to 

rice crops at 52 days after planting (DAP) and to shallot crops at 21 DAP. The cultivation was 

performed in accordance with the conventional practices of the farmers. However, in order to 

facilitate the administration of biopesticide treatment, the farmers were prohibited from using 

synthetic pesticides. 

2.2. Rejuvenation and formulation of biopesticides 

A suspension of 0.1 mL of pure isolate was obtained using a syringe needle and placed in a 

Petri dish containing PDA (potatoes dextrose agar) media in a sterile environment. The suspension 

in the Petri dish containing PDA media was flattened by rotating it. Subsequently, the Petri dish 

was closed and wrapped in order to prevent contamination from external sources. Next, pure 

isolates of M. anisopliae and T. harzianum were propagated in test tubes with PDA media as a 

starter for propagation with 100 g of corn media. Following inoculation, the cultures were 

subjected to incubation at room temperature for a period of 7−10 days, until the fungi had 

proliferated to the point of covering the surface of the corn media (Fig. 2). The corn media that 

had been covered with fungi was then ground using a flour machine, producing mycogranules that 

were ready to be applied. The concentration of spores used in the demonstration plot was 108 spore 
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L-1.  

 
Fig. 1. Research location 

2.3. Observations and applications 

Observations were conducted at several diagonal points of the sample and on two 

demonstration plots: one receiving biopesticide application and another receiving synthetic 

pesticide. The biopesticide was administered to rice crops at 52 DAP and to shallot crops at 21 

DAP. The concentration of entomopathogenic fungi was determined to be 108 spores mL-1. The 

biopesticide was administered in a three-times-per-week manner. Concurrently, observations were 

conducted over a three-day interval until the conclusion of the vegetative phase. 

 

Fig. 2. Biopesticide rejuvenation and formulation: a) T. harzianum isolate; b) M. anisoplae 

isolate; c) propagation in slant tubes; d) dilution process; and e) solid media formulation 
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2.4. Experimental design and data analysis 

The experimental design was implemented by allocating land for biopesticide application 

and land cultivated through conventional farming practices (Fig. 3). The land size was 250 m2 for 

each rice crop and shallot crop. The land area was 150 m2 for the purpose of control. The 

designated treatment land is located in proximity to a technical irrigation area, where the quantity 

of water can be controlled. The samples observed included a population of arthropods, comprising 

pests and natural enemies. To complement the observational data, sweep netting was conducted 

on ten separate occasions. The collected arthropods were preserved in a vial containing a solution 

of formalin (25 mL), acetic acid (1 mL), water (15 mL), and distilled water [19,20]. The samples 

were then examined under a stereo microscope (Leica) to facilitate identification. The analysis was 

conducted using both descriptive and quantitative methods. The instrument used for the 

measurement of diversity indicators was PAST 4.11 software. 

 
Fig. 3. Illustration of the experimental design for the application of biopesticide and the control 

treatment 

3. Results and Discussion 

Sustainable agriculture can be defined as a cultivation system that prioritize environmental 

sustainability. Surjan cropping system is one of the habitat modifications employed for integrated 

pest management. Habitat modification is an integrated part of the agroecosystem, serving to 

disrupt the cycle of pest development. The modification of habitat within surjan cropping system 

configuration involves the combination of polyculture with different bed elevation configurations 

for different crops. Prior to planting, farmers usually till the soil to break the life cycle of pests. 

Additionally, it was observed that in their agricultural practices, farmers use insectary plants 

(refugia), which serve as hosts for natural enemies. The insectary plants utilized include 
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sunflowers, cosmos, zinnias, and rose balsams [21,22]. Conversely, the conventional system 

mirrors the monoculture system and relies heavily on the utilization of synthetic pesticides. 

Arthropods are the dominant biotic components in the rice field ecosystem and are described 

as indicators of environmental health. The presence of arthropods is greatly influenced by the 

actions and practices of farmers. The more intensively synthetic pesticides are used, the greater 

the likelihood of a decline in arthropod populations due to the fact that these chemicals, designed 

to target a broad range of organisms, can also affect non-target species. Arthropods have functions 

that involve interactions with exosystems. For example, they serve as predatory enemies, natural 

enemies, bioindicators, pollinators, and decomposers. In sum, arthropods act as a medium for plant 

interaction with the environment. However, there are species of arthropods that are pests, posing 

a threat to farmers and leading to crop failure if left unchecked. The implementation of 

environmentally friendly agricultural practices is recommended, and this can be achieved by 

exercising caution and restraint in the application of synthetic pesticides. An alternative 

recommendation could be the utilization of biological agents, such as M. anisopliae and T. 

harzianum. In the context of surjan cropping system configuration in Kulonprogo, farmers have 

implemented a complex agroecosystem involving habitat manipulation. Nevertheless, synthetic 

pesticides are still used intensively. 

 
Fig. 4. Abundance of arthropods due to biopesticide application 

The present study was conducted for the purpose of investigating the composition of 

arthropod population in relation to biopesticide application. To date, the utilization of biopesticides 

containing active fungal ingredients for the management of pests and diseases has not been 

previously documented. Metarhizium anisopliae, an entomopathogenic fungus, has been utilized 
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to control various pests. This fungus produces secondary metabolites, including tropolone, citrinin, 

phenomonic acid, and azaphilone [23]. Metarhizium anisopliae has demonstrated effectiveness in 

the management of pests across various orders [13,24]. Trichoderma harzianum is a fungus that 

produces indole-3-acetic acid (IAA), a hormone that stimulates plant growth [25]. The mechanism 

by which this occurs involves an increase in the activities of certain enzymes, including SOD, 

POD and APX. Indole-3-acetic acid (IAA) is a biostimulant that is produced by plant growth-

promoting microbes (PGPM), including Sphingomonas and Gemmatimonas, in addition to 

Trichoderma [26]. 

 
 Fig. 5. Correlation between the types of crops cultivated and biopesticide applications 

Fig. 4 presents the results of the analysis of arthropod composition in each observation 

period. The presence of arthropods was observed at three-day intervals following the application 

of the biopesticide and the farmer's conventional farming method (control). The box plots 

illustrating the entire composition of arthropods collected are displayed in Fig. 5. The composition 

of the box plots presented is dynamic and varied. The observed crops were rice and shallots, with 

a combination of both in the control treatment. The highest diversity of arthropods was found in 

the agricultural area planted with rice crops. At the time of observation, the rice had reached 52 

DAP, marking the onset of the vegetative phase. The observation was conducted by collecting all 

the arthropods present. In the agricultural area that received the control treatment, the composition 

of arthropods exhibited a tendency to be less than the total species found. This result was attributed 

to the application of synthetic pesticides as the control treatment within the study area. The efficacy 

of synthetic pesticides is typically more immediate than that of biopesticides. The efficacy of 

biopesticides, while less immediate, is characterized by their ability to target specific pests. As 

illustrated by the box plot, the arthropod composition in the agricultural area with surjan system 

configuration, coupled with biopesticide application, was more abundant than in the agricultural 

area with surjan system configuration and synthetic pesticide application (control). 
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Table 1. Inventarization and composition of arthropods in area with surjan system configuration 

and biopesticide application 

Arthropods Status Order Family 

Total 

Number 

of 

Individu

als 

Reference Key 

Identification 

Verania sp. Predator Coleoptera Coccinelidae 68 [27]  

Hololena sp. Predator Araneae Agelenidae 46 [28] 

Atherigona sp. Pest Diptera  Muscidae 7 [29] 

Anisoptera sp. Bioindicators Odonata Gomphidae 15 [30]  

Scirpophaga sp. Pest Lepidoptera Crambidae 28 [31]  

Haltica sp. Herbivore  Coleoptera Halticidae 13 [32]  

Menochilus sp. Predator Coleoptera Coccinellidae 11 [33]  

Scymnus sp. Predator Coleoptera Coccinellidae 52 [34]  

Leptocorisa accuta Pest Hemiptera Alydidae 38 [35] 

Nilaparvata lugens Pest Hempitera Delphacidae 28 [36] 
Oxya sp. Pest Orthoptera Acrididae 13 [37]  

Brachonidae Parasitoid Hymenoptera Braconidae 8 [38] 

Formicidae Predator Hymenoptera Formicidae 32 [39] 

 

The findings of this study demonstrated a correlation between the response of arthropod 

composition and differences in biopesticide treatment and farmers' conventional methods, both of 

which incorporated surjan cropping system. As illustrated in Fig. 5, there was no correlation 

between the two crops (i.e., rice and shallots) and biopesticide application. However, a significant 

difference in arthropod composition was observed in the agricultural area with surjan cropping 

system configuration and biopesticide treatment. This phenomenon can be posited as a 

recommendation for integrated pest management. The symbol (x) in the analysis results signifies 

the absence of a discernible correlation or the presence of an extremely negligible correlation. In 

contrast, the large oval symbol indicates a high degree of correlation. 

Table 2. Inventarization and composition of arthropods in area with surjan system configuration 

(control) 

Arthropods Status Order Family 

Total 

Number 

of 

Individu

als 

Reference Key 

Identification 

Verania sp. Predator Coleoptera Coccinelidae 30 [27] 

Hololena sp. Predator Araneae Agelenidae 21 [28] 

Atherigona sp. Pest Diptera  Muscidae 15 [29] 

Anisoptera sp. Bioindicators Odonata Gomphidae 2 [30] 

Scirpophaga sp. Pest Lepidoptera Crambidae 58 [31] 

Leptocorisa accuta Pest Hempitera Alydidae 35 [35] 

Paederus fuscipes Predator Coleoptera Coccinellidae 2 [40] 

Spodoptera exigua Pest Lepidoptera Noctuidae 23 [41] 

 

As illustrated in Table 1, the composition of arthropods in the area with surjan system 

configuration and biopesticide applications exhibited a greater number of species. In Table 1, the 



Wagiyana et al. Journal of Applied Agricultural Science and Technology Vol. 9 No. 3 (2025): 306-318 

 

 314 

arthropods have been classified based on their status and function in the agroecosystem 

components. In the area where biopesticides were applied, predators such as Verania sp. became 

the most dominant natural enemy. The number of predators and bioindicators was found to be 

higher in areas that had undergone biopesticide treatment in comparison to area that had received 

the control treatment. This finding suggests that the biopesticide is effective in targeting specific 

pests without causing harm to natural enemies, as indicated by previous studies [42,43]. 

Conversely, as illustrated in Table 2, the number of arthropod species identified following farmers' 

application of synthetic pesticides as a control treatment was diminished. The utilization of 

synthetic pesticides can exterminate pests while concurrently eliminating natural enemies within 

an ecosystem. Prolonged utilization can lead to the development of resistance, resulting in a more 

prevalent and aggressive pest population. 

4. Conclusions 

The application of biopesticide within surjan cropping system configuration does not result 

in the disruption of natural enemy populations. In the agricultural area characterized by surjan 

cropping system configuration, the composition of arthropod species exhibited greater diversity 

following biopesticide application in comparison to synthetic pesticide application. In the area 

with surjan system configuration and biopesticide application, the composition of predatory 

arthropods was dominated by Verania sp., with a total abundance of 68 individuals, followed by 

Scymnus sp. with 52 individuals and Hololena sp. with 46 individuals. The dominant species 

within the order Coleoptera and the family Coccinelidae were identified. In the agricultural area 

with surjan system configuration and synthetic pesticide application (control), the number of 

arthropod species was found to be reduced, while the pest population exhibited greater dominance 

in comparison to natural enemies. 
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