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Abstract. The present study investigates the antioxidant properties of in-vitro cultured leaves of 

cat's whiskers (Orthosiphon stamineus) compared to the well-known antioxidant quercetin. 

Antioxidants are crucial for neutralizing free radicals and play a significant role in protecting 

cells from oxidative stress, a contributing factor to various diseases and aging processes. The 

research aims to quantify and compare the radical scavenging activity of extracts from the in vitro 

cultured leaves and quercetin, using the DPPH method, a widely recognized assay in antioxidant 

research. Extraction involved macerating in-vitro cultured cat's whiskers leaves with 96% ethanol, 

which facilitates the dissolution of active phytochemicals. Antioxidant activity was subsequently 

assessed through the DPPH assay, where colorimetric change indicates the extract’s scavenging 

ability towards free radicals. The findings revealed that the in vitro cultured leaves extract 

exhibited a potent antioxidant activity, with an IC50 value of 0.74 μg/mL, significantly lower than 

quercetin’s IC50 value of 7.51 μg/mL. These results highlight the potential of in-vitro cultured 

cat's whiskers as a natural antioxidant source, suggesting possible applications in the food and 

pharmaceutical industries, where combating oxidative stress is essential for health maintenance 

and disease prevention. Further research is necessary to elucidate the specific biochemical 

pathways and mechanisms underpinning the antioxidant capacity of the in vitro cultured leaves 

extracts. 
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1. Introduction 

Antioxidants play a pivotal role in neutralizing free radicals, thereby protecting against 

oxidative damage, which is increasingly recognized as a contributor to various diseases and aging. 

The plant Orthosiphon stamineus, commonly known as cat's whiskers, has garnered attention for 

its health benefits, particularly its antioxidant capabilities. It contains significant bioactive 

compounds exhibiting strong antioxidant activities [1]. This study aims to comparatively assess 

the antioxidant properties of in vitro-cultured cat's whiskers leaves and quercetin, a well-

established antioxidant, utilizing the DPPH (2.2-diphenyl-1-picrylhydrazyl) assay to quantify their 

effectiveness. 

The extraction of antioxidants from plant material is critical for assessing their potential 

health benefits. Extraction methods can significantly influence the yield and activity of bioactive 
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compounds [2]. Cold maceration has been found to better preserve antioxidant capacities 

compared to hot extraction methods, which may degrade sensitive phytochemicals [3]. In this 

study, an ethanol maceration method was employed, recognized for its effectiveness in extracting 

phenolic and flavonoid compounds—both renowned for their antioxidant properties. The 

utilization of 96% ethanol is corroborated by research that highlights its efficacy in maximizing 

the yield of antioxidant compounds from various plant sources [4]. 

The DPPH radical scavenging assay is a widely utilized method for evaluating the 

antioxidant activity of extracts from natural products [5]. This assessment provides crucial insights 

into the therapeutic potential of plant extracts, particularly pharmacological evaluations and 

nutraceutical applications. Previous studies have shown that various extraction methods, including 

maceration and ultrasonic methods, can yield varying antioxidant capacities from plant materials 

[6,7].  

Research indicates that specific growth regulators, such as 2.4-D, can significantly influence 

callus formation, leading to increased accumulation of beneficial phytochemicals [8]. This 

enhancement is crucial, as it allows more efficient extraction processes that optimize antioxidant 

and antimicrobial properties [9,10]. Furthermore, optimizing extraction techniques, such as 

through response surface methodology (RSM), has successfully increased the antioxidant activity 

of cat's whiskers extracts [10].  

Research has demonstrated that cat's whiskers extracts exhibit significant antioxidant 

activity, as assessed through various assays, reflecting their strong capacity to scavenge free 

radicals and prevent oxidative stress-related health issues [11,12]. This capacity is largely 

attributed to the phenolic compounds and flavonoids in the leaves [11,12].  In vitro culture of cat’s 

whisker leaves, like that of other plant tissue, serves multiple vital purposes in plant propagation, 

conservation, and biochemical research. A primary advantage of in vitro culture is the regeneration 

of plant tissues in a controlled environment, enabling rapid multiplication of plant material without 

dependency on traditional soil-based agriculture. This method is especially beneficial for exotic or 

endangered plants, as it preserves genetic material while promoting biodiversity.  

Furthermore, current research robustly supports the notion that in-vitro cultured extracts of 

cat's whiskers serve as formidable natural antioxidants, outperforming established antioxidants 

such as quercetin, as elucidated by the DPPH assay. Given the serious health implications of 

oxidative stress on, these findings highlight the need for further scientific exploration into the 

bioactive properties of Orthosiphon stamineus. Such research is imperative for substantiating its 

application in preventive health strategies and could lead to significant advancements in dietary 

recommendations and therapeutic interventions. The compelling evidence of its antioxidant 

qualities encourages a deeper understanding of the underlying mechanisms. This approach could 
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pave the way for innovative food products and underscore the relevance of harnessing natural 

plant-derived antioxidants in the search for effective therapy against oxidative stress-related 

disorders. By connecting these two perspectives, emerging scientific insights highlight cat 

whiskers as a significant contributor to both preventive health and nutritional strategies, 

demonstrating its dual potential to inform dietary innovations while addressing critical health 

issues. 

2. Material and Methods 

2.1 Instrument 

Rotary evaporator (Heidolph, Germany), analytical balance (Metler toledo, German), 

analytical balance (Metler toledo, German), water bath (lab companion, korea), and UV-Visible 

spectrophotometer (Shimadzu, Japan, UV 1900i) were used. 

2.2 Plant Materials 

Cat whiskers plants from in vitro culture were obtained from micropropagation and 

acclimatization in the medicinal plant garden of the Faculty of Pharmacy, Jenderal Achmad Yani 

University (Fig. 1). The media and growth regulators used in micropropagation were Murashige 

and Skoog (MS) + 6-Benzylaminopurine (BAP) 2ppm + 1-Naphthaleneacetic acid (NAA) 3 ppm 

[12]. 

 
a                                       b 

Fig. 1. Cat's whiskers plants from in vitro culture [12]. a = five month old, b = nine month old 

2.3 Chemicals 

Ethanol 96% (Merck, Germany), quercetin (Merck, Germany), DPPH (2,2-diphenyl-1-

picrylhydrazyl; Merck, Germany) were used. 

2.4 Quantitative Antioxidant Activity Test 

2.4.1. Preparation of Reagent Solution and Determination of DPPH Wavelength 

10 mg of DPPH powder were weighed and dissolved in pro-analysis methanol to a final 

volume of 100 mL to obtain a stock solution of 100 μg/mL. Then, 40 mL DPPH solution was 

diluted with pro-analysis methanol to a final volume of 100 mL, achieving a DPPH solution with 

a concentration of 40 μg/mL. The solution was subsequently incubated for 30 minutes, protected 
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from to prevent photodegradation of DPPH, which could otherwise compromise measurements 

accuracy. Preparation and Measurement of Quercetin Solution. 

5 mg of quercetin were weighed and dissolved in pro analysis methanol up to a final volume 

of 50 mL, shaken until homogeneous, yielding a quercetin stock solution of 100 μg/mL. Working 

solutions of 6 concentrations (2, 4, 6, 8, 10, and 12 μg/mL) were prepared. The solution was 

incubated for 30 minutes, protected from the light, and their absorbance was measured using a UV 

Visible spectrophotometer at the maximum wavelength of the DPPH solution. 

2.4.2. Preparation and Measurement of Sample Solutions for Cat's Whiskers Leaves from In Vitro 

 Culture (Orthosiphon stamineus) 

5 mg of extract was weighed and dissolved in methanol pro analysis up to a final volume of 

50 mL, shaken until homogeneous, yielding a stock solution of 100 μg/mL. Working solutions 

were prepared at 6 concentrations (0.2; 0.4; 0.8; 1.2; 1.6; 2 μg/mL). The solution was incubated 

for 30 minutes, being protected from light, and their absorbance was measured using a UV-Visible 

spectrophotometer at the maximum wavelength of the DPPH solution. 

2.4.3. Determination percentage of DPPH radical scavenging activity 

The percentage of free radical reduction is calculated using equation (1). 

% Free radical reduction =  
Control absorbance−Sample absorbance

Control absorbance
x 100% (1) 

notes: 

Control absorbance: Absorption of DPPH solution 

Sample absorbance: Absorption of the sample solution. 
 

3. Result and Discussion 

3.1 Measurement long wave maximum DPPH 

The maximum wavelength of DPPH used was 516.0 nm (Fig. 2). This wavelength provides 

the maximum absorbance for the test solution and ensures the greatest sensitivity. 

 
Fig. 2. Maximum wavelength of DPPH solution 40 μg/mL in methanol pro analysis 

Evaluating antioxidant capacity is crucial for understanding the health benefits of natural 

medicine ingredients, particularly those rich in polyphenols and flavonoids. The established 
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maximum absorbance wavelength for the DPPH radical is approximately 517 nm, as reported in 

multiple studies and literature reviews [13]. This wavelength ensures sensitivity in detecting 

antioxidant activities, making it a standard in food science research. 

Antioxidants interact with DPPH, exhibiting radical scavenging activity and producing a 

distinctive color change from deep purple to yellow, which can be quantitatively assessed. This 

change reflects not only the presence of antioxidants but also the extent to which they reduce 

DPPH, indicating their effectiveness. Studies have shown that the gradient of color change aligns 

with the antioxidants concentration in the tested solution, providing reliable data on antioxidant 

capacity [14,15]. This method is further validated by studies showing that absorbance changes 

correlate significantly with antioxidant levels across various experimental setups [16,17]. 

Flavonoids such as quercetin and kaempferol exhibit strong antioxidant properties, enabling 

them to scavenge free radicals and alter the color of the DPPH solution at or near 517 nm [18]. 

The absorption spectrum at this wavelength allows researchers to compare the radical scavenging 

potentials of various compounds, enriching our understanding of dietary antioxidants, and their 

health implications. 

As noted in the literature, certain colored extracts may absorb at similar wavelengths, 

potentially confounding results [19,20]. For instance, pigments such as carotenoids in some plant 

extracts can overlap with DPPH absorbance at around 517 nm, leading to underestimation of free 

radical scavenging capability [20]. To address these interferences, advanced techniques such as 

HPLC coupled with DPPH assays have been recommended. This approach effectively separates 

pigments from antioxidant compounds, allowing more accurate measurement of antioxidant 

activities [21].  

The reproducibility and accuracy of the DPPH assay depend on proper calibration of 

spectrophotometers and consistent use of the optimal wavelength at 517 nm [21]. Researchers 

emphasize standardizing conditions and invoking controls to ensure comparability across studies. 

Such standardization is vital for systematic reviews and meta-analyses intending to draw 

quantitative conclusions about the health benefits associated with antioxidant-rich diets [22]. 

The method exploits the hydrogen atom transfer (HAT) mechanism, in which antioxidants 

neutralize free radicals and inhibit oxidative stress [23]. This mechanistic understanding is crucial 

for pharmacological applications, particularly in developing natural antioxidants as therapeutic 

agents [24,25]. There are increasing concerns about oxidative stress-related diseases, including 

neurodegenerative disorders and cancer [26,27]. 

The widespread use of DPPH as a benchmark assay reflects its robustness and versatility. Its 

simplicity makes it suitable for high-throughput screening in the nutraceutical industries, where 

rapid evaluation of antioxidant potential can guide product formulation [28]. 
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3.2 Activity test cat 's whiskers antioxidant in vitro culture and quercetin 

The Inhibitor Concentration 50 (IC50) value is the concentration of extract required to 

attenuate 50% of DPPH, reflecting the sample’s antioxidant potency. A lower IC50 value indicates 

activity. Absorbance values are used to calculate the percentage inhibition of DPPH free radicals 

(% reduction). The concentration curve (μg/mL) against % reduction is illustrated in Fig. 3 and 

Fig. 4. The linear regression equation is expressed as y = bx + a, and the IC50 is calculated by 

substituting y with 50. The resulting antioxidant activity is presented in Table 1. 

Table 1. IC50 Values extract cat whiskers ethanol in vitro culture results and quercetin 
No. Sample IC 50 ( μg / mL) 

1. Quercetin 7.50 9 μg / mL 

2. Ethanol extract of cat's whiskers from in vitro culture 0.735 μg / mL 

 

Antioxidant activity analysis shows that the ethanol extract of in vitro–cultured cat's 

whiskers leaves (Orthosiphon stamineus) has an IC50 of 0.735 μg/mL (Table 2), while quercetin 

has an IC50 of 7.509 μg/mL (Table 3). These results indicate that in vitro–cultured cat whiskers 

has very strong antioxidant activity and greater antioxidant potential compared to quercetin. 

Table 2. Antioxidant activity of cat's whiskers from in vitro culture 
Concentration 

(µg/mL) 

 Absorbance of 

Quercetin 

Average 

Absorbance 

Absorbance 

of DPPH 

control 

% free 

radical 

scavenging   

IC50 

(μg/mL) 

I II III 

0.2 0.30 0.314 0.308 0.307 0.581 47.139  

0.4 0.299 0.306 0.295 0.300 0.581 48.400  

0.8 0.283 0.29 0.285 0.286 0.581 50.808 0.735 

1.2 0.273 0.281 0.276 0.277 0.581 52.414  

1.6 0.265 0.273 0.266 0.268 0.581 53.904  

2 0.254 0.257 0.263 0.258 0.581 55.624  

 

 
  Fig. 3. Linear regression curve of the percentage of DPPH free radical scavenging against the 

concentration of cat's whiskers from in vitro culture 

 

Radical scavenging activity is a pivotal metric in evaluating the antioxidant activity of 

extracts, particularly their ability to scavenge free radicals such as DPPH. It indicates the 

concentration of extract required to reduce DPPH activity by 50%, illustrating the sample’s 
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efficacy against oxidative stress. A lower IC50 value indicates greater antioxidant capability, 

making it a critical parameter for comparative analyses among different substances. 

Table 3. Antioxidant activity of Quercetin 
Concentration 

(µg/mL) 

 Absorbance of 

Quercetin 

Average 

Absorbance 

Absorbance 

of DPPH 

control 

% free 

radical 

scavenging   

IC50 

(μg/mL) 

I II III 

2 0.503 0.538 0.606 0.549 0.692 20.665  

4 0.412 0.489 0.495 0.465 0.692 32.755  

6 0.355 0.411 0.434 0.40 0.692 42.197 7.509 

8 0.28 0.312 0.32 0.304 0.692 56.069  

10 0.213 0.302 0.254 0.256 0.692 62.958  

12 0.207 0.211 0.204 0.207 0.692 70.039  

 

 
Fig. 4. Linear regression curve of the percentage of DPPH free radical scavenging against 

quercetin concentration 

 

The IC50 value is determined by plotting extract concentration against the percentage 

inhibition of the DPPH radical. Applying linear regression to these data generates an equation from 

which IC50 can be calculated by substituting the response corresponding to 50% inhibition. This 

analytical approach is supported by several studies on the antioxidant activities of plant extracts. 

Research has indicated that extracts with lower IC50 values have a superior ability to donate 

hydrogen atoms to the DPPH radical, underscoring the impact of chemical composition on 

antioxidant performance. This correlation is primarily attributed to antioxidant components, 

particularly polyphenols and flavonoids, which are prevalent in many medicinal plants [29,30]. 

Absorbance measurements at 517 nm, as used in the DPPH assay, enable quantification of 

radical-scavenging activity. Each measurement is vital, as it directly influences the calculated IC50 

values. Reductions in absorbance correlate inversely with the effective concentration of 

antioxidant extracts, illustrating the interaction between DPPH radicals and hydrogen-donating 

antioxidants. 

The antioxidant activity of plant extracts has attracted considerable interest due to their 

potential health benefits, particularly in mitigating oxidative stress-related diseases. This 
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discussion focuses on the effective antioxidant properties of Orthosiphon stamineus (cat's whiskers 

plant). In vitro studies have determined the IC50 values of ethanol extracts of cat's whiskers leaves, 

demonstrating significant antioxidant activity. Specifically, the IC50 of the ethanolic extract of O. 

stamineus was 0.735 μg/mL, while quercetin, a well-known antioxidant, had an IC50 of 

approximately 7.509 μg/mL [31,32]. This suggests that in vitro cultured O. stamineus exhibits 

remarkably potent antioxidant capabilities, surpassing that of quercetin. 

The utilization of plant tissue culture techniques has gained momentum in enhancing the 

antioxidant activity of medicinal plants, including the cat's whiskers plant (Orthosiphon 

stamineus). Antioxidant activity in plants primarily involves complex enzyme systems such as 

superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), which play pivotal roles in 

neutralizing reactive oxygen species (ROS) that can damage cellular structures [33,34]. In cat 

whiskers, as in several other plant species, tissue culture has been shown to significantly enhance 

the production of these antioxidant enzymes. Environmental factors, nutrient availability in the 

culture media, and hormonal regulations strongly influence the antioxidant profile [35]. When 

cultured in vitro under optimized conditions, including proper light intensity and nutrient 

concentrations, the production of phytochemicals with antioxidant properties, such as flavonoids 

and phenolic compounds, is markedly increased. These compounds are crucial for mitigating 

oxidative stress in plant tissues [36,37]. Modulation of these antioxidants in response to stress is 

essential for plant survival and productivity, and tissue culture effectively enhances these 

responses. 

The adoption of tissue culture techniques enables the selection of cell lines or explants with 

high antioxidant production. These optimized strains can be continuously cultivated to maintain 

consistent and enhanced yields of bioactive compounds. Findings from Ayyappan reinforce the 

notion that antioxidant potential correlates positively with therapeutic properties [38]. This 

principle can be applied to the tissue culture of cat's whiskers, resulting in superior antioxidant 

profiles. 

4. Conclusions 

The integration of plant tissue culture with the enhancement of antioxidant activity, 

particularly in cat's whiskers, is a growing field with the potential to advance the medicinal value 

of plants. Effective use of tissue culture techniques can improve the production and quality of 

phytochemical sources, ensuring the sustainable use of this plant and similar species. As studies 

further clarify the relationship between culture parameters and antioxidant synthesis, practical 

applications in agriculture, pharmaceuticals, and nutraceuticals are expected to expand, ultimately 

leading to improved health outcomes. 
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