Lignin Degradation of Kapok Fiber (Ceiba pentandra, L) with Different Times of Pulping
##plugins.themes.academic_pro.article.main##
Abstract
Lignin reduced the adhesion between the polymeric matrix and natural reinforcement in composite materials by its hydrophobic characteristic. Removal of lignin can be a solution to improve fiber function in composite use. This study aimed to determine the degradation of lignin at different times of pulping. The soda process was conducted at 60, 70, 80, 90, and 100 minutes of pulping using heat in a room atmosphere. Yields, lignin content, and lignin spectrum (FT-IR analysis) were measured. The result showed the highest degradation of lignin was in 100 minutes of pulping with 80.34% lignin degradation and 3.57% lignin left in fibers. However, the yield of fibers decreased with increasing pulping time due to lignin removal. 100 minutes of pulping time showed the highest loss of fiber yield. This study showed the best pulping time for kapok fiber is 100 minutes with 3.57 % lignin remaining in the pulp.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Arslan, C., Javed, M., Sattar, A., Ilyas, F., Tariq, W., & Gillani, S. H. (2020). Optimizing the Effect of Chemical Pretreatment on Lignocellulosic Properties of Wheat Straw. Journal of Wastes and Biomass Management, 2(2), 28–32. https://doi.org/10.26480/jwbm.02.2020.28.32
- Bozaci, E. (2019). Optimization of the alternative treatment methods for Ceiba pentandra (L.) Gaertn (kapok) fiber using response surface methodology. Journal of the Textile Institute, 110(10), 1404–1414. https://doi.org/10.1080/00405000.2019.1602897
- Ciftci, D., Flores, R. A., & Saldaña, M. D. A. (2018). Cellulose Fiber Isolation and Characterization from Sweet Blue Lupin Hull and Canola Straw. Journal of Polymers and the Environment, 26, 2773–2781. https://doi.org/10.1007/s10924-017-1164-5
- Ding, N., Liu, H., Sun, Y., Tang, X., Lei, T., Xu, F., Zeng, X., & Lin, L. (2021). Lignin degradation in cooking with active oxygen and solid Alkali process: A mechanism study. Journal of Cleaner Production, 278, 123984. https://doi.org/10.1016/j.jclepro.2020.123984
- Dong, T., Xu, G., & Wang, F. (2015). Adsorption and adhesiveness of kapok fiber to different oils. Journal of Hazardous Materials, 296, 101–111. https://doi.org/10.1016/j.jhazmat.2015.03.040
- Fontes, M. R. V., Rosa, M. P., Fonseca, L. M., Beck, P. H., Zavareze, E. da R., & Dias, A. R. G. (2021). Thermal stability , hydrophobicity and antioxidant potential of ultrafine poly ( lactic acid )/ rice husk lignin fibers. Brazilian Journal of Chemical Engineering, 38(1), 133–144. https://doi.org/10.1007/s43153-020-00083-1
- Gabhane, J., Kumar, S., & Sarma, A. K. (2020). Effect of glycerol thermal and hydrothermal pretreatments on lignin degradation and enzymatic hydrolysis in paddy straw. Renewable Energy, 154, 1304–1313. https://doi.org/10.1016/j.renene.2020.03.035
- Hassan, N. S., & Badri, K. H. (2014). Lignin recovery from alkaline hydrolysis and glycerolysis of oil palm fiber. AIP Conference Proceedings, 1614(February 2015), 433–438. https://doi.org/10.1063/1.4895236
- Jamaldheen, S. B., Kurade, M. B., Basak, B., Yoo, C. G., Oh, K. K., Jeon, B. H., & Kim, T. H. (2022). A review on physico-chemical delignification as a pretreatment of lignocellulosic biomass for enhanced bioconversion. Bioresource Technology, 346(February 2022), 126591. https://doi.org/10.1016/j.biortech.2021.126591
- Jiang, B., Chen, C., Liang, Z., He, S., Kuang, Y., Song, J., Mi, R., Chen, G., Jiao, M., & Hu, L. (2020). Lignin as a Wood-Inspired Binder Enabled Strong, Water Stable, and Biodegradable Paper for Plastic Replacement. Advanced Functional Materials, 30(4), 1–11. https://doi.org/10.1002/adfm.201906307
- Jin, L., Zeng, G., Chen, H., Wang, L., Ji, H., Lin, S., Peng, R., & Sun, D. (2021). Mechanism of Lignin Degradation via White Rot Fungi Explored Using Spectral Analysis and Gas Chromatography-Mass Spectrometry. BioResources, 16(3), 5494–5507. https://doi.org/10.15376/biores.16.3.5494-5507
- Jung, W., Savithri, D., Sharma-Shivappa, R., & Kolar, P. (2018). Changes in lignin chemistry of switchgrass due to delignification by sodium hydroxide pretreatment. Energies, 11(2), 376. https://doi.org/10.3390/en11020376
- Liu, Z., Padmanabhan, S., Cheng, K., Xie, H., Gokhale, A., Afzal, W., Na, H., Pauly, M., Bell, A. T., & Prausnitz, J. M. (2014). Two-step delignification of miscanthus to enhance enzymatic hydrolysis: Aqueous ammonia followed by sodium hydroxide and oxidants. Energy and Fuels, 28(1), 542–548. https://doi.org/10.1021/ef401317z
- Melro, E., Filipe, A., Sousa, D., Valente, A. J. M., Romano, A., Antunes, F. E., & Medronho, B. (2020). Dissolution of kraft lignin in alkaline solutions. International Journal of Biological Macromolecules, 148, 688–695. https://doi.org/10.1016/j.ijbiomac.2020.01.153
- Meng, Q., Yan, J., Wu, R., Liu, H., Sun, Y., Wu, N., Xiang, J., Zheng, L., Zhang, J., & Han, B. (2021). Sustainable production of benzene from lignin. Nature Communications, 12, 4534. https://doi.org/10.1038/s41467-021-24780-8
- Modenbach, A. A., & Nokes, S. E. (2014). Effects of sodium hydroxide pretreatment on structural components of biomass. Transactions of the ASABE, 57(4), 1187–1198. https://doi.org/10.13031/trans.57.10046
- Queiroz, M. F., Melo, K. R. T., Sabry, D. A., Sassaki, G. L., & Rocha, H. A. O. (2015). Does the use of chitosan contribute to oxalate kidney stone formation?. Marine Drugs, 13(1), 141–158. https://doi.org/10.3390/md13010141
- Sangalang, R. H. (2021). Kapok Fiber-Structure, Characteristics and Applications : (A Review). Oriental Journal of Chemistry, 37(3), 513–523. https://pdfs.semanticscholar.org/2e49/0711bafe62c1d51bef97e523f062c7f32b0b.pdf
- Tolesa, L. D., Gupta, B. S., Tiwikrama, A. H., Wu, Y. C., & Lee, M. J. (2020). Alkali lignin degradation with aqueous ammonium-based ionic liquid solutions. Journal of Cleaner Production, 258, 120724. https://doi.org/10.1016/j.jclepro.2020.120724
- Wang, J., Zheng, Y., & Wang, A. (2012). Effect of kapok fiber treated with various solvents on oil absorbency. Industrial Crops and Products, 40(1), 178–184. https://doi.org/10.1016/j.indcrop.2012.03.002
- Xu, C., Liu, F., Alam, A., Chen, H., Zhang, Y., Liang, C., Xu, H., …, & Wang, Z. (2020). Comparative study on the properties of lignin isolated from different pretreated sugarcane bagasse and its inhibitory effects on enzymatic hydrolysis. International Journal of Biological Macromolecules, 146, 132–140. https://doi.org/10.1016/j.ijbiomac.2019.12.270
- Yao, F., Xu, S., Jiang, Z., Zhao, J., & Hu, C. (2022). The inhibition of p-hydroxyphenyl hydroxyl group in residual lignin on enzymatic hydrolysis of cellulose and its underlying mechanism. Bioresource Technology, 346(December 2021), 126585. https://doi.org/10.1016/j.biortech.2021.126585
- Yoo, C. G., Meng, X., Pu, Y., & Ragauskas, A. J. (2020). The critical role of lignin in lignocellulosic biomass conversion and recent pretreatment strategies: A comprehensive review. Bioresource Technology, 301, 1–29. https://doi.org/10.1016/j.biortech.2020.122784
- Yuan, Y., Jiang, B., Chen, H., Wu, W., Wu, S., Jin, Y., & Xiao, H. (2021). Recent advances in understanding the effects of lignin structural characteristics on enzymatic hydrolysis. Biotechnology for Biofuels, 14(1), 1–20. https://doi.org/10.1186/s13068-021-02054-1
- Zhang, X., Zhang, L., Fan, Y., & Wang, Z. (2022). The case-dependent lignin role in lignocellulose nanofibers preparation and functional application-A review. Green Energy and Environment, September, xxxx. https://doi.org/10.1016/j.gee.2022.09.008