Topsoil Thickness and Its Chemical Properties between Tea Plantation and Bare Land on Different Slopes
##plugins.themes.academic_pro.article.main##
Abstract
Land degradation in Indonesia is often attributed to human activities and high rainfall. The existence of forest land clearing and conversion into non-agricultural land causes topsoil erosion and structural damage, reducing the capacity to hold water and nutrients. The phenomenon contributes to the degradation of tea (Camellia sinensis) plantation, showing the need to improve agricultural land by maintaining soil ecosystems. Therefore, this study aimed to compare soil from tea plantation with bare land on two different slopes based on the chemical quality at Gambung Tea Plantation, Research Institute for Tea and Cinchona. The selected land slope was gentle (0 - 8%) and steep (30 - 40%), producing four environmental combinations. Soil sampling was carried out in two different layers, at 0 - 20 cm and 20 - 40 cm. The experimental parameters observed were topsoil thickness, soil water content, pH, and soil nutrients. The results showed that in steep slope land conditions, tea cover crops maintained topsoil with a thickness of 15.01 cm compared to bare land. This corresponded to topsoil degradation of 19.6% compared to gently slope topographic conditions. In gently slope conditions, both types of land cover did not show significant differences. Tea plant cover maintained better soil water content and reduced soil N loss, although steep slopes showed lower soil nutrient content due to absorption.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Wahyunto, Dariah A. Degradasi Lahan di Indonesia: Kondisi Existing, Karakteristik, dan Penyeragaman Definisi Mendukung Gerakan Menuju Satu Peta. Jurnal Sumberdaya Lahan 2014;8:81–93. https://www.neliti.com/id/publications/132467/degradasi-lahan-di-indonesia-kondisi-existing-karakteristik-dan-penyeragaman-def.
- Wibowo A, Soeprobowati TR, Sudarno S. Laju Erosi dan Sedimentasi Daerah Aliran Sungai Rawa Jombor dengan Model USLE dan SDR untuk Pengelolaan Danau Berkelanjutan. Indonesian Journal of Conservation 2015;4:16–27. https://journal.unnes.ac.id/nju/ijc/article/view/5154.
- Sukarman, Dariah A. TANAH ANDOSOL DI INDONESIA: Karakteristik, Potensi, Kendala, dan Pengelolaannya untuk Pertanian. Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian; 2014. https://www.researchgate.net/publication/323398785.
- BPS. Statistik Teh Indonesia 2020. BPS RI 2021. https://www.bps.go.id/publication/2021/11/30/a39c39e9b09d77c9a282a0b5/statistik-teh-indonesia-2020.html.
- Liu S, Yao X, Zhao D, Lu L. Evaluation of the ecological benefits of tea gardens in Meitan County, China, using the InVEST model. Environ Dev Sustain 2021;23:7140–7155. https://doi.org/10.1007/s10668-020-00908-6.
- Geekiyanage N, Rathnayaka S, Gamage S, Sandamali AAD, Nanayakkara S, Duminda DMS, et al. Tree Diversity and Soil Characteristics in a Tea–Forest Interface in Southwest Sri Lanka. Forests 2021;12:1506. https://doi.org/10.3390/f12111506.
- Horel Á, Gelybó G, Potyó I, Pokovai K, Bakacsi Z. Soil Nutrient Dynamics and Nitrogen Fixation Rate Changes over Plant Growth in Temperate Soil. Agronomy 2019;9:179. https://doi.org/10.3390/agronomy9040179.
- Sopialena S, Rosfiansyah R, Sila S. The benefit of top soil and fertilizer mixture to improve the ex-coal mining land. Nusantara Bioscience 2017;9:36–43. https://doi.org/10.13057/nusbiosci/n090107.
- FAO. Standard operating procedure for soil electrical conductivity, soil/water, 1:5 2021. https://www.fao.org/publications/card/en/c/CB3354EN/.
- FAO. Standard operating procedure for soil organic carbon Walkley-Black method 2019. https://www.fao.org/3/ca7471en/ca7471en.pdf.
- FAO. Standard operating procedure for soil nitrogen - Kjeldahl method 2021. https://www.fao.org/3/cb3642en/cb3642en.pdf.
- ISRIC. Procedures for Soil Analysis (6th ed.). Wageningen: 2002.
- Balai Penelitian Tanah. Petunjuk Teknis Pengamatan Tanah. Bogor: Balai Penelitian Tanah; 2004.
- Fang X-M, Chen F-S, Wan S-Z, Yang Q-P, Shi J-M. Topsoil and Deep Soil Organic Carbon Concentration and Stability Vary with Aggregate Size and Vegetation Type in Subtropical China. PLoS One 2015;10:e0139380. https://doi.org/10.1371/journal.pone.0139380.
- Ruan JY, Wu X, Yuanzhi S. Nutrient input and evaluation of fertilization efficiency in typical tea areas of China. In: Härdter R, Xie J, Zhou J, Fan Q, editors. Nutrient input and evaluation of fertilization efficiency in typical tea areas of China, Switzerland: International Potash Institute; 2004, p. 367–375. https://www.researchgate.net/publication/311450698_Nutrient_input_and_evaluation_of_fertilization_efficiency_in_typical_tea_areas_of_China.
- Cheruiyot EK, Mumera LM, Ng’etich WK, Hassanali A, Wachira FN. High fertilizer rates increase susceptibility of tea to water stress. J Plant Nutr 2009;33:115–129. https://doi.org/10.1080/01904160903392659.
- Hajiboland R. Environmental and nutritional requirements for tea cultivation. Folia Horticulturae 2017;29:199–220. https://doi.org/10.1515/fhort-2017-0019.
- Ahmed IU, Assefa D, Godbold DL. Land-Use Change Depletes Quantity and Quality of Soil Organic Matter Fractions in Ethiopian Highlands. Forests 2022;13:69. https://doi.org/10.3390/f13010069.
- Khadka D. Assessment of Relationship between Soil Organic Matter and Macronutrients, Western Nepal. Journal of Biological Pharmaceutical and Chemical Research 2016;3:4–12. https://www.jobpcr.com/archive-abs.php?arc=267.
- Voltr V, Menšík L, Hlisnikovský L, Hruška M, Pokorný E, Pospíšilová L. The Soil Organic Matter in Connection with Soil Properties and Soil Inputs. Agronomy 2021;11:779. https://doi.org/10.3390/agronomy11040779.
- Gerke J. The Central Role of Soil Organic Matter in Soil Fertility and Carbon Storage. Soil Syst 2022;6:33. https://doi.org/10.3390/soilsystems6020033.
- Tripathi N, Singh RS. Influence of different land uses on soil nitrogen transformations after conversion from an Indian dry tropical forest. Catena (Amst) 2009;77:216–223. https://doi.org/10.1016/j.catena.2009.01.002.
- Yawson DO, Kwakye PK, Armah FA, Frimpong KA. The Dynamics of Potassium (K) in Representative Soil Series of Ghana. ARPN Journal of Agricultural and Biological Science 2011;6:48–55. https://www.researchgate.net/publication/260793689.
- Singh AK, Pathak SK. Potassium in tea (Camellia sinensis (L) O. Kuntze) cultivation from soil to cup quality - A review. Agricultural Reviews 2018;38. https://doi.org/10.18805/ag.R-1731.
- Kuśmierz S, Skowrońska M, Tkaczyk P, Lipiński W, Mielniczuk J. Soil Organic Carbon and Mineral Nitrogen Contents in Soils as Affected by Their pH, Texture and Fertilization. Agronomy 2023;13:267. https://doi.org/10.3390/agronomy13010267.
- Clarholm M, Skyllberg U, Rosling A. Organic acid induced release of nutrients from metal-stabilized soil organic matter – The unbutton model. Soil Biol Biochem 2015;84:168–176. https://doi.org/10.1016/j.soilbio.2015.02.019.
- Yamashita M. Root system formation in clonal tea plants. JARQ: Japan Agricultural Research Quarterly 1994;28:26–35. https://www.jircas.go.jp/sites/default/files/publication/jarq/28-1-026-035_0.pdf.
- Muslim RQ, Kricella P, Pratamaningsih MM, Purwanto S, Suryani E, Ritung S. Characteristics of Inceptisols derived from basaltic andesite from several locations in volcanic landform. SAINS TANAH - Journal of Soil Science and Agroclimatology 2020;17:115. https://doi.org/10.20961/stjssa.v17i2.38221.
- Ofem KI, Esu IE, Unuigbe BO, Iren OB. Properties, Soil forming processes and Sustainable use of soils on the Residual and Colluvial Soils in Biase LGA, Southeastern Nigeria. Nigerian Journal of Soil and Environmental Research 2015;13:54–64. https://www.researchgate.net/publication/333827498_Properties_Soil_forming_processes_and_Sustainable_use_of_soils_on_the_Residual_and_Colluvial_Soils_in_Biase_LGA_Southeastern_Nigeria.
- Kar SZ, Berenjian A. Soil formation by ecological factors: Critical review. Am J Agric Biol Sci 2013;8:114–116. https://doi.org/10.3844/ajabssp.2013.114.116.
- Sittadewi EH. Characteristics and Potential of Vetiver Grass (Chrysopogon zizanioides) for Slope Reinforcement and Erosion Mitigation. Jurnal Sains dan Teknologi Mitigasi Bencana 2022;16:65–70. https://ejurnal.bppt.go.id/index.php/JSTMB/article/view/5390.
- Angima SD, O’Neill MK, Omwega AK, Stott DE. Use of tree/grass hedges for soil erosion control in the Central Kenyan highlands. J Soil Water Conserv 2016;55:478–482. https://www.researchgate.net/publication/297902340.
- Lee J-T, Lin Y-S, Shih C-Y, Lee M-J. Root Functional Traits and Water Erosion-Reducing Potential of Two Indigenous C4 Grass Species for Erosion Control of Mudstone Badlands in Taiwan. Water (Basel) 2022;14:1342. https://doi.org/10.3390/w14091342.
- Hlisnikovský L, Kunzová E. The Content of Topsoil Nutrients, Ph and Organic Carbon as Affected by Long-Term Application of Mineral and Organic Fertilisers. Agriculture (Pol’nohospodárstvo) 2014;60:142–148. https://doi.org/10.1515/agri-2015-0003.
- Lu J, Li S, Liang G, Wu X, Zhang Q, Gao C, et al. The Contribution of Microorganisms to Soil Organic Carbon Accumulation under Fertilization Varies among Aggregate Size Classes. Agronomy 2021;11:2126. https://doi.org/10.3390/agronomy11112126.
- Lehman R, Cambardella C, Stott D, Acosta-Martinez V, Manter D, Buyer J, et al. Understanding and Enhancing Soil Biological Health: The Solution for Reversing Soil Degradation. Sustainability 2015;7:988–1027. https://doi.org/10.3390/su7010988.
- Barchia MF, Amri K, Apriantoni R. Land Degradation and Option of Practical Conservation Concepts in Manna Watershed Bengkulu Indonesia. TERRA : Journal of Land Restoration 2019;1:23–30. https://doi.org/10.31186/terra.1.2.23-30.
- Wang J, Fu B, Qiu Y, Chen L. Soil nutrients in relation to land use and landscape position in the semi-arid small catchment on the loess plateau in China. J Arid Environ 2001;48:537–550. https://doi.org/10.1006/jare.2000.0763.
- Volungevičius J, Feiza V, Amalevičiūtė-Volungė K, Liaudanskienė I, Šlepetienė A, Kuncevičius A, et al. Transformations of different soils under natural and anthropogenized land management. Zemdirbyste-Agriculture 2019;106:3–14. https://doi.org/10.13080/z-a.2019.106.001.