Growth and Yield Production of Pakcoy as Influenced by Artificial Light Irradiation

##plugins.themes.academic_pro.article.main##

Sari Widya Utami
Artdhita Fajar Pratiwi
Galih Mustiko Aji

Abstract

Artificial light in indoor plant production is still a challenge related to the amount of electrical energy used, such as in the Pakcoy plant. The Pakcoy plant has nutritional and economic value and is usually used as a research indicator plant. This study aimed to determine the effect of artificial light irradiation on the growth and yield of Pakcoy plants. The research was conducted in a plant factory in an indoor hydroponic system, with LED light of 100 umol/m2/s as a light source for the growth of Pakcoy plants. The artificial light irradiation length treatment consisted of 4 levels, namely 12 hours/day, 16 hours/day, 20 hours/day, and 24 hours/day. The most significant growth, yield, and content of vitamin C in Pakcoy plants were obtained in maximum artificial light exposure for 24 hours/day, and the highest protein content was obtained in the long irradiation treatment for 16 hours/day.

##plugins.themes.academic_pro.article.details##

Author Biographies

Sari Widya Utami, Cilacap State Polytechnic

Department of Agroindustry Product Development

Artdhita Fajar Pratiwi, Cilacap State Polytechnic

Department of Electrical Engineering

Galih Mustiko Aji, Cilacap State Polytechnic

Department of Electrical Engineering

How to Cite
Utami, S. W., Pratiwi, A. F., & Aji, G. M. (2023). Growth and Yield Production of Pakcoy as Influenced by Artificial Light Irradiation. Journal of Applied Agricultural Science and Technology, 7(3), 236-245. https://doi.org/10.55043/jaast.v7i3.126

References

  1. Aji, G. M., Pratiwi, A. F., & Utami, S. W. (2022). Rancang Bangun Sistem Plant Factory untuk Produksi Tanaman Pakcoy (Brassica rapa L.). Agroteknika, 5(2). https://doi.org/https://doi.org/10.55043/agroteknika.v5i2.149
  2. Cocetta, G., Casciani, D., Bulgari, R., Musante, F., Kołton, A., Rossi, M., & Ferrante, A. (2017). Light use efficiency for vegetables production in protected and indoor environments. European Physical Journal Plus, 132(1). https://doi.org/10.1140/epjp/i2017-11298-x
  3. Egorova, K. V., Sinyavina, N. G., Artemyeva, A. M., Kocherina, N. V., & Chesnokov, Y. V. (2021). Qtl analysis of the content of some bioactive compounds in brassica rapa l. Grown under light culture conditions. Horticulturae, 7(12), 1–22. https://doi.org/10.3390/horticulturae7120583
  4. Fairuzia, F., Sobir, S., Maharijaya, A., Ochiai, M., & Yamada, K. (2022). Longday Photoperiod Accelerates Flowering in Indonesian Non-Flowering Shallot Variety. AGRIVITA Journal of Agricultural Science, 44(2), 216–224. https://doi.org/10.17503/agrivita.v44i2.3053
  5. Fan, R., Liu, H., Zhou, S., He, Z., Zhang, X., Liu, K., … Lu, W. (2020). CFD simulation of the airflow uniformity in the plant factory. IOP Conference Series: Earth and Environmental Science, 560(1). https://doi.org/10.1088/1755-1315/560/1/012074
  6. Gabriel, A. A., & Shafri, M. H. (2022). The Effect of Nutrition and Planting Media on the Productivity and Quality of Baby Kai-Lan (Brassica oleracea var. alboglabra) Cultivated Using Nutrient Film Technique System. AGRIVITA Journal of Agricultural Science, 44(3), 490–499. https://doi.org/10.17503/agrivita.v44i3.2810
  7. Harun, A. N., Mohamed, N., Ahmad, R., Rahim, A. R. A., & Ani, N. N. (2019). Improved Internet of Things (IoT) monitoring system for growth optimization of Brassica chinensis. Computers and Electronics in Agriculture, 164(July 2018), 104836. https://doi.org/10.1016/j.compag.2019.05.045
  8. Kang, J. H., KrishnaKumar, S., Atulba, S. L. S., Jeong, B. R., & Hwang, S. J. (2013). Light intensity and photoperiod influence the growth and development of hydroponically grown leaf lettuce in a closed-type plant factory system. Horticulture Environment and Biotechnology, 54(6), 501–509. https://doi.org/10.1007/s13580-013-0109-8
  9. Liu, K., Gao, M., Jiang, H., Ou, S., Li, X., He, R., … Liu, H. (2022). Light Intensity and Photoperiod Affect Growth and Nutritional Quality of Brassica Microgreens. Molecules, 27(3). https://doi.org/10.3390/molecules27030883
  10. Lobiuc, A., Vasilache, V., Oroian, M., Stoleru, T., Burducea, M., Pintilie, O., & Zamfirache, M.-M. (2017). Blue and Red LED Illumination Improves Growth and Bioactive Compounds Contents in Acyanic and Cyanic Ocimum basilicum L. Microgreens. Molecules, 22(12), 2111. https://doi.org/10.3390/molecules22122111
  11. Lu, N., Song, C., Kuronuma, T., Ikei, H., Miyazaki, Y., & Takagaki, M. (2020). The possibility of sustainable urban horticulture based on nature therapy. Sustainability (Switzerland), 12(12), 1–11. https://doi.org/10.3390/su12125058
  12. Mao, H., Hang, T., Zhang, X., & Lu, N. (2019). Both Multi-Segment Light Intensity and Extended Photoperiod Lighting Strategies, with the Same Daily Light Integral, Promoted Lactuca sativa L. Growth and Photosynthesis. Agronomy, 9(12), 857. https://doi.org/10.3390/agronomy9120857
  13. Meas, S., Luengwilai, K., & Thongket, T. (2020). Enhancing growth and phytochemicals of two amaranth microgreens by LEDs light irradiation. Scientia Horticulturae, 265(January), 109204. https://doi.org/10.1016/j.scienta.2020.109204
  14. Mickens, M. A., Torralba, M., Robinson, S. A., Spencer, L. E., Romeyn, M. W., Massa, G. D., & Wheeler, R. M. (2019). Growth of red pak choi under red and blue, supplemented white, and artificial sunlight provided by LEDs. Scientia Horticulturae, 245(October 2018), 200–209. https://doi.org/10.1016/j.scienta.2018.10.023
  15. Paradiso, R., & Proietti, S. (2022). Light-Quality Manipulation to Control Plant Growth and Photomorphogenesis in Greenhouse Horticulture: The State of the Art and the Opportunities of Modern LED Systems. Journal of Plant Growth Regulation, 41(2), 742–780. https://doi.org/10.1007/s00344-021-10337-y
  16. Pennisi, G., Pistillo, A., Orsini, F., Cellini, A., Spinelli, F., Nicola, S., … Marcelis, L. F. M. (2020). Optimal light intensity for sustainable water and energy use in indoor cultivation of lettuce and basil under red and blue LEDs. Scientia Horticulturae, 272(May), 109508. https://doi.org/10.1016/j.scienta.2020.109508
  17. Riikonen, J., Kettunen, N., Gritsevich, M., Hakala, T., Särkkä, L., & Tahvonen, R. (2016). Growth and development of Norway spruce and Scots pine seedlings under different light spectra. Environmental and Experimental Botany, 121, 112–120. https://doi.org/10.1016/j.envexpbot.2015.06.006
  18. Son, K. H., Jeon, Y. M., & Oh, M. M. (2016). Application of supplementary white and pulsed light-emitting diodes to lettuce grown in a plant factory with artificial lighting. Horticulture Environment and Biotechnology, 57(6), 560–572. https://doi.org/10.1007/s13580-016-0068-y
  19. Tan, W. K., Goenadie, V., Lee, H. W., Liang, X., Loh, C. S., Ong, C. N., & Tan, H. T. W. (2020). Growth and glucosinolate profiles of a common Asian green leafy vegetable, Brassica rapa subsp. chinensis var. parachinensis (choy sum), under LED lighting. Scientia Horticulturae, 261(October 2018), 108922. https://doi.org/10.1016/j.scienta.2019.108922
  20. Utami, S. W., & Kristiningsih, A. (2021). The Effectiveness of Cattle Biogas Waste on Corn Straw Protein Levels for Animal Feed. Journal of Sustainable Research In Management of Agroindustry (SURIMI), 1(2), 5–9. https://doi.org/10.35970/surimi.v1i2.886
  21. Viršilė, A., Brazaitytė, A., Vaštakaitė-Kairienė, V., Miliauskienė, J., Jankauskienė, J., Novičkovas, A., & Samuolienė, G. (2019). Lighting intensity and photoperiod serves tailoring nitrate assimilation indices in red and green baby leaf lettuce. Journal of the Science of Food and Agriculture, 99(14), 6608–6619. https://doi.org/10.1002/jsfa.9948
  22. Yan, Z., He, D., Niu, G., & Zhai, H. (2019). Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Scientia Horticulturae, 248(August 2018), 138–144. https://doi.org/10.1016/j.scienta.2019.01.002
  23. Zhang, X., Wang, J., Zheng, J., Ning, X., Ingenhoff, J., & Liu, W. (2020). Design of artificial climate chamber for screening tea seedlings’ optimal light formulations. Computers and Electronics in Agriculture, 174(May). https://doi.org/10.1016/j.compag.2020.105451
  24. Zou, T., Huang, C., Wu, P., Ge, L., & Xu, Y. (2020). Optimization of artificial light for spinach growth in plant factory based on orthogonal test. Plants, 9(4). https://doi.org/10.3390/plants9040490