Thermal Properties and Cooling Simulation of Red Dragon Fruit Using the Finite Difference Method

##plugins.themes.academic_pro.article.main##

Lailatul Maghfiroh
Sumardi Hadi Sumarlan
Hammam Hammam

Abstract

Red dragon fruit (Hylocereus polyrhizus) can be transformed into various processed products, such as chips, jam, and juice. However, thermal processing may significantly alter its physical and chemical properties. As the calorific properties vary among different fruits, this study aims to measure the thermal properties of red dragon fruit. By measuring its thermal properties, red dragon fruit can be processed with improved energy efficiency and optimized thermal management. This study aims to examine the thermal properties and perform a cooling simulation of red dragon fruit. The cooling simulation, based on one-dimensional radial thermal flow, was conducted using the spherical heat equation explicitly discretized by the Forward Time Central Space (FTCS) scheme within the Finite Difference Method (FDM). The specific heat, thermal diffusivity, and thermal conductivity of red dragon fruit were 3.827 kJ/kg oC, 9.18 x 10-4 cm2/s, and 0.34 W/m oC, respectively. The overall average coefficient of determination (R2) from the validation test of the simulation results was 0.9654.  Based on these findings, the one-dimensional (radial) discretized heat transfer equation model can be used to predict the temperature distribution in spherical fruit over time, based on its thermal diffusivity. However, this approach has limitations. Future research would benefit from measuring the thermal diffusivity of whole red dragon fruit and applying a three-dimensional discretized heat transfer equation to obtain more accurate results and minimize potential errors.

##plugins.themes.academic_pro.article.details##

Author Biographies

Lailatul Maghfiroh, Universitas Brawijaya

Department of Biosystems Engineering

Sumardi Hadi Sumarlan, Universitas Brawijaya

Department of Biosystems Engineering

Hammam Hammam, Universitas Brawijaya

Department of Biosystems Engineering

How to Cite
1.
Maghfiroh L, Sumarlan SH, Hammam H. Thermal Properties and Cooling Simulation of Red Dragon Fruit Using the Finite Difference Method. J. appl. agricultural sci. technol. [Internet]. 2025May25 [cited 2025Jul.4];9(2):156-71. Available from: https://www.jaast.org/index.php/jaast/article/view/317

References

  1. Hussein Z, Fawole OA, Opara UL. Harvest and Postharvest Factors Affecting Bruise Damage of Fresh Fruits. Horticultural Plant Journal 2020;6:1–13. https://doi.org/10.1016/j.hpj.2019.07.006.
  2. Mohan VB, Lau K tak, Hui D, Bhattacharyya D. Graphene-based materials and their composites: A review on production, applications and product limitations. Composites Part B: Engineering 2018;142:200–20. https://doi.org/10.1016/j.compositesb.2018.01.013.
  3. Senthamaraikannan P, Saravanakumar SS, Sanjay MR, Jawaid M, Siengchin S. Physico-chemical and thermal properties of untreated and treated Acacia planifrons bark fibers for composite reinforcement. Materials Letters 2019;240:221–4. https://doi.org/10.1016/j.matlet.2019.01.024.
  4. Arivalagan M, Karunakaran G, Roy TK, Dinsha M, Sindhu BC, Shilpashree VM, et al. Biochemical and nutritional characterization of dragon fruit (Hylocereus species). Food Chemistry 2021;353:129426. https://doi.org/10.1016/j.foodchem.2021.129426.
  5. Jalgaonkar K, Mahawar MK, Bibwe B, Kannaujia P. Postharvest Profile, Processing and Waste Utilization of Dragon Fruit (Hylocereus Spp.): A Review. Food Reviews International 2022;38:733–59. https://doi.org/10.1080/87559129.2020.1742152.
  6. Choudhury AG, Sen J, Chandra B, Barman M, Das S. Technological Advancement for Sustainable Post-harvest Quality and Storage of Dragon Fruit [Hylocereus Species (Haworth) Britton & Rose] 2018. https://www.researchgate.net/publication/328628857
  7. Kerr WL. Food drying and evaporation processing operations. Elsevier Inc.; 2019. https://doi.org/10.1016/B978-0-12-814803-7.00014-2.
  8. Shafigh P, Asadi I, Mahyuddin NB. Concrete as a thermal mass material for building applications - A review. Journal of Building Engineering 2018;19:14–25. https://doi.org/10.1016/j.jobe.2018.04.021.
  9. Animasaun IL, Shah NA, Wakif A, Mahanthesh B, Sivaraj R, Koriko OK. Ratio of Momentum Diffusivity to Thermal Diffusivity: Introduction, Meta-Analysis, and Scrutinization. Boca Raton: CRC Press; 2022.
  10. Hutabarat MA, Hasbullah R, Solahudin M. Perlakuan Uap Panas dan Pengaruhnya Terhadap Mutu Buah Melon (Cucumis melo L.) Selama Penyimpanan. Jurnal Teknik Pertanian Lampung 2019;8. http://dx.doi.org/10.23960/jtep-l.v8i2.65-75
  11. Mohsenin NN. Thermal Properties of Food and Agricultural Materials. Boca Raton: CRC Press; 2020.
  12. Hawa LC, Sugesti A, Wibisono Y, Mardiyani SA. Penentuan Sifat Termal Cabai Puyang (Piper retrofractum Vahl.) Kering Pada Tiga Tahap Kematangan. Agrointek : Jurnal Teknologi Industri Pertanian 2022;16:123–33. https://doi.org/10.21107/agrointek.v16i1.8996.
  13. Nurullaeli AMN, Nugraha AM. Media Bantu Simulasi Distribusi Panas Pada Batang 2021:837–41. https://proceeding.unindra.ac.id/index.php/semnasristek/article/viewFile/5075/913.
  14. Emmilia M. Simulasi Perubahan Suhu dalam Buah Alpukat (Persea americana Mill) Pada Proses Pendinginan. [Thesis]: Malang: Fakultas Teknologi Pertanian, Universitas Brawijaya; 2007.
  15. Noor I, Fitrian A, Huda DN. Prosiding Seminar Nasional Sains Simulasi Distribusi Temperatur pada Pelat Tipis Berbantuan FDM ( Finite Difference Method ) 2020;1:1–5. https://proceeding.unindra.ac.id/index.php/sinasis/article/.
  16. SNI. Cara uji makanan dan minuman 1992:23. https://www.slideshare.net/slideshow/sni-01-28911992-cara-uji-makanan-minuman/16107575.
  17. Nugraheni B, Sulistyowati E. Analisis kimia, makronutrien dan kadar glukomanan pada tepung umbi porang (Amorphalus konjac K. Koch.) setelah dihilangkan kalsium okslatnya menggunakan NaCl 10%. Repository STIFAR 2018:92–101. https://repository.stifar.ac.id/Repository/article/view/46/73
  18. Saraswati LD, Arifan F, Muhammad F, Yuliana RAD, Nissa C. Nutrition assessment of “kamir”-typical food of pemalang, Central Java Province, Indonesia. Journal of Physics: Conference Series 2019;1217. https://doi.org/10.1088/1742-6596/1217/1/012047.
  19. Subroto E, Lembong E, Filianty F, Indiarto R, Primalia G, Putri MS, et al. The Analysis Techniques Of Amino Acid And Protein In Food And Agricultural Products. International Journal of Scientific & Technology Research 2020;9:29–36. https://www.ijstr.org/final-print/oct2020/The-Analysis-Techniques-Of-Amino-Acid-And-Protein-In-Food-And-Agricultural-Products.pdf.
  20. Jamal S, Jamil D, Khidhir Z. Protein Determination in some Animal Products from Sulaymaniyah Markets Using Kjeldahl Procedure. Journal of Food and Dairy Sciences 2020;11:343–6. https://doi.org/10.21608/jfds.2020.160394.
  21. Bilge G, Sezer B, Eseller KE, Berberoglu H, Koksel H, Boyaci IH. Ash analysis of flour sample by using laser-induced breakdown spectroscopy. Spectrochimica Acta - Part B Atomic Spectroscopy 2016;124:74–8. https://doi.org/10.1016/j.sab.2016.08.023.
  22. Agustina R, Syah H, Moulana R. Karakteristik Pengeringan Biji Kopi dengan Pengering Tipe Bak dengan Sumber Panas Tungku Sekam Kopi dan Kolektor Surya. Jurnal Ilmiah Teknologi Pertanian AGROTECHNO 2016;1:20–7. https://ojs.unud.ac.id/index.php/agrotechno/article/view/22016/14599
  23. Senin SF, Hamid R. Ground penetrating radar wave attenuation models for estimation of moisture and chloride content in concrete slab. Construction and Building Materials 2016;106:659–69. https://doi.org/10.1016/j.conbuildmat.2015.12.156.
  24. BPOM. Pedoman Evaluasi Mutu Gizi dan Non Gizi Pangan 2019. https://standarpangan.pom.go.id/dokumen/pedoman/Pedoman-Evaluasi-Mutu-Gizi-dan-Non-Gizi-Pangan.pdf
  25. Kanzler S, Manschein M, Lammer G, Wagner KH. The nutrient composition of European ready meals: Protein, fat, total carbohydrates and energy. Food Chemistry 2015;172:190–6. https://doi.org/10.1016/j.foodchem.2014.09.075.
  26. Sahubawa L, Pratomo SA. Nutritional Composition and Consumer Preference Level from Hanpen Fish Cake Based on African Catfish Surimi and Cassava Flour. IOP Conference Series: Earth and Environmental Science 2022;1118. https://doi.org/10.1088/1755-1315/1118/1/012072.
  27. Mardiyani SA, Sumarlan SH, Argo BD, Laksono AS. Determination of physical and thermophysical characteristics of red peppers (Capsicum annum) using unsteady-state method. AIP Conference Proceedings 2018;1977. https://doi.org/10.1063/1.5042924.
  28. Macedo LL, Corrêa JLG, Araújo C da S, Vimercati WC, Pio LAS. Process optimization and ethanol use for obtaining white and red dragon fruit powder by foam mat drying. Journal of Food Science 2021;86:426–33. https://doi.org/10.1111/1750-3841.15585.
  29. Singh RP, Heldman DR. Introduction to food engineering: Fifth edition. 2014. https://doi.org/10.1016/C2011-0-06101-X.
  30. Owczarek M. Parametric study of the method for determining the thermal diffusivity of building walls by measuring the temperature profile. Energy and Buildings 2019;203. https://doi.org/10.1016/j.enbuild.2019.109426.
  31. Song N, Cao D, Luo X, Wang Q, Ding P, Shi L. Highly thermally conductive polypropylene/graphene composites for thermal management. Composites Part A: Applied Science and Manufacturing 2020;135:105912. https://doi.org/10.1016/j.compositesa.2020.105912.
  32. Uetani K, Hatori K. Thermal conductivity analysis and applications of nanocellulose materials. Science and Technology of Advanced Materials 2017;18:877–92. https://doi.org/10.1080/14686996.2017.1390692.
  33. Abdullah SA. Nutritional Value and Quality Standard of Popcorn Cooked by Microwave and Conventional Heating. IOP Conference Series: Earth and Environmental Science 2021;910. https://doi.org/10.1088/1755-1315/910/1/012035.
  34. Holman JP. Perpindahan Kalor (Heat Transfer). Jakarta: Penerbit Erlangga; 1984.
  35. Rofi’ah S. Studi Penetapan Sifat Termal Berbagai Varietas dan Konsentrasi Puree Buah Naga (Hylocereus sp.). [Thesis]: Jember: Fakultas Teknologi Pertanian, Universitas Jember; 2013.
  36. Bhagya Raj GVS, Dash KK. Heat transfer analysis of convective and microwave drying of dragon fruit. Journal of Food Process Engineering 2021;44:1–14. https://doi.org/10.1111/jfpe.13775.
  37. Karneta R, Rejo A, Priyanto G, Pambayun R. Penentuan Difusivitas Panas Pempek Lenjer Selama Perebusan Menggunakan Metode Numerik. Jurnal Agritech 2015;35:18. https://doi.org/10.22146/agritech.9415.
  38. Kumar C, Millar GJ, Karim MA. Effective Diffusivity and Evaporative Cooling in Convective Drying of Food Material. Drying Technology 2015;33:227–37. https://doi.org/10.1080/07373937.2014.947512.
  39. Sutarsi S, Taruna I, Hanun J. Effect of Cooling on Thermal Properties of Tomato (Solanum Lycopersicum). UNEJ E-Proceeding 2022:10–21. https://jurnal.unej.ac.id/index.php/prosiding/article/view/32158%0A.
  40. Zain NF, Pantjajani T, Askitosari TD. Studi Literatur: Aplikasi dan Fungsi Porang (Amorphophallus Oncophyllus) dalam Frozen Yoghurt. KELUWIH: Jurnal Sains Dan Teknologi 2021;2:70–80. https://doi.org/10.24123/saintek.v2i2.4635.
  41. Phinney DM, Frelka JC, Heldman DR. Composition-Based Prediction of Temperature-Dependent Thermophysical Food Properties: Reevaluating Component Groups and Prediction Models. Journal of Food Science 2017;82:6–15. https://doi.org/10.1111/1750-3841.13564.
  42. Hung Anh LD, Pásztory Z. An overview of factors influencing thermal conductivity of building insulation materials. Journal of Building Engineering 2021;44. https://doi.org/10.1016/j.jobe.2021.102604.
  43. Sulistyaningtyas AD, Wantika RR. Profil Distribusi Panas Menggunakan Skema Beda Hingga dengan Pengaruh Variasi Nilai Sumbu Mayor. Journals of Mathematics and Mathematics Education 2022;7:108–16. https://doi.org/10.26594/jmpm.v7i2.2923.