The Effect of Pesticide Residues on Environmental Quality in the Kromong II Watershed, Pacet District, Mojokerto Regency

##plugins.themes.academic_pro.article.main##

Dimas Ganda Permana Putra
Zenita Afifah Fitriyani
Fahrur Rijal Ardiyanto
Yuni Rosita Dewi
Titik Khusumawati
Fariz Kustiawan Alfarisy
Mega Darmi Novita
Soesanto Soesanto

Abstract

The river basin serves multiple ecological and socio-economic functions for the local community, particularly the Kromong II Watershed in Pacet District. A major issue in the upstream area of the watershed is the use of pesticides by local residents in agricultural land management. Excessive pesticide use leads to significant environmental residue accumulation. This study aimed to assess pesticide residue levels, evaluate the quality of irrigation water and soil fertility in rice fields, and map polluted locations using the ArcGIS 10.3 remote sensing application. The analysis was conducted at three designated research sites: Stations I, II, and III. Biochemical Oxygen Demand (BOD) was analyzed using the SNI 6989.72:2009 standard, while Chemical Oxygen Demand (COD) was measured following the SNI 6989.2029 method at the Mojokerto Regency Environmental Agency (DLH) Laboratory. Soil organic carbon (C-organic) was analyzed using the IKP-208 Organic Carbon Test, and total nitrogen (Total N) was determined through spectrophotometric analysis at the PT Graha Mutu Persada Laboratory. Metomil was analyzed using the Liquid Chromatography–Mass Spectrometry (LC-MS) method, while Profenofos was analyzed using Gas Chromatography–Mass Spectrometry (GC-MS). The study found that the highest levels of BOD and COD were recorded at Station III, with values of 11.4 mg/L and 28.6 mg/L, respectively. The highest total nitrogen (Total N) concentration was observed at Station I, measuring 0.14%, while the highest soil organic carbon (C-organic) content was found at Station III, at 7.87%. The LC-MS analysis of methomyl residues showed the highest concentration at Station III, with a value of 0.002 mg/L in irrigation water samples. Similarly, the GC-MS analysis of Profenofos residues indicated the highest concentration at Station II, measuring 8.25 ml/L. Based on these findings, it can be concluded that pesticide residue pollution, particularly from Profenofos, is most severe in the irrigation channel at Station II.

##plugins.themes.academic_pro.article.details##

Author Biographies

Dimas Ganda Permana Putra, University Mayjen Sungkono

Department of Agricultural

Zenita Afifah Fitriyani, University Mayjen Sungkono

Department of Economic

Fahrur Rijal Ardiyanto, University Mayjen Sungkono

Department of Education

Yuni Rosita Dewi, University of Surabaya

Department of Sains

Titik Khusumawati, University Mayjen Sungkono

Department of Law

Fariz Kustiawan Alfarisy, State University of Surabaya

Graduate School

Mega Darmi Novita, University Mayjen Sungkono

Department of Agricultural

Soesanto Soesanto, University Mayjen Sungkono

Department of Agricultural

How to Cite
1.
Putra DGP, Fitriyani ZA, Ardiyanto FR, Dewi YR, Khusumawati T, Alfarisy FK, Novita MD, Soesanto S. The Effect of Pesticide Residues on Environmental Quality in the Kromong II Watershed, Pacet District, Mojokerto Regency. J. appl. agricultural sci. technol. [Internet]. 2025May25 [cited 2025Jul.4];9(2):128-39. Available from: https://www.jaast.org/index.php/jaast/article/view/348

References

  1. Ait-Mouheb N, Mange A, Froment G, Lequette K, Bru-Adan V, Maihol J claude, et al. Effect of untreated or reclaimed wastewater drip-irrigation for lettuces and leeks on yield, soil and fecal indicators. Resour Environ Sustain 2022;8. https://doi.org/10.1016/j.resenv.2022.100053.
  2. Zhang Y, Li Y, Huang G, Ma Y, Zhou Y. Optimizing sustainable development in arid river basins: A multi-objective approach to balancing water, energy, economy, carbon and ecology nexus. Environ Sci Ecotechnology 2025;23. https://doi.org/10.1016/j.ese.2024.100481.
  3. Shahid M, Singh UB. The ecological hazards of profenofos revealed by soil beneficial-bacteria, plant seedlings, and plasmid nicking assays: A short-term toxicity investigation. Plant Stress 2024;14. https://doi.org/10.1016/j.stress.2024.100577.
  4. Ramos RO, Albuquerque MVC, da Silva SF, Lyra WS, Araújo MCU, de Sousa JT, et al. Pathways, by-products, reaction intermediates, and kinetics study of degradation of profenofos via photo-assisted peroxidation. Desalin Water Treat 2022;276:237–49. https://doi.org/10.5004/dwt.2022.28902.
  5. Ndiribe CC. The nature fit concept of waste reduction: Prospects for engineering a clean future. Resour Environ Sustain 2023;14. https://doi.org/10.1016/j.resenv.2023.100127.
  6. Trap J, Blanchart E. Intensifying the soil ecological functions for sustainable agriculture: Acting with stakeholders. Curr Res Environ Sustain 2023;5:100225. https://doi.org/10.1016/j.crsust.2023.100225.
  7. Peraturan Pemerintah. Peraturan Pemerintah No . 7 Tahun 1973 Tentang: Pengawasan Atas Peredaran, Penyimpanan Dan Penggunaan Pestisida. Jakarta 1973;1960:2. https://peraturan.bpk.go.id/Details/68075/pp-no-7-tahun-1973
  8. Soto-Barajas MC, Archundia D, Martínez OGR, López E, Almazan J, Prado B. Current and future perspectives on biopesticides analysis in soil. J Nat Pestic Res 2025;12. https://doi.org/10.1016/j.napere.2025.100120.
  9. Yuan Z, Pang Y, Gao J, Liu X, Sheng H, Zhuang Y. Improving quantification of rainfall runoff pollutant loads with consideration of path curb and field ridge. Resour Environ Sustain 2021;6. https://doi.org/10.1016/j.resenv.2021.100042.
  10. Ferrans L, Jani Y, Hogland W. Chemical extraction of trace elements from dredged sediments into a circular economy perspective: Case study on Malmfjärden Bay, south-eastern Sweden. Resour Environ Sustain 2021;6. https://doi.org/10.1016/j.resenv.2021.100039.
  11. Gil-Rodas N, Guevara-Mora M, Rivas G, Dávila G, García D, Contreras-Perdomo A, et al. A comparative study of several types of indices for river quality assessment. Water Qual Res J 2023;58:169–83. https://doi.org/10.2166/wqrj.2023.029.
  12. Niu S, Jiang Y, Liu H, Wang R, Cheng B, Cheng Y. Occurrence of dissolved organic matter in storm-drain inlet sediments and its implication for urban stormwater infrastructure sustainability. Resour Environ Sustain 2024;16. https://doi.org/10.1016/j.resenv.2024.100158.
  13. Aryani D, Wahyuningsih S. Pollution of Pesticide Residues in Rivers : Review. Aquasains 2021;10:979. https://doi.org/10.23960/aqs.v10i1.p979-994.
  14. Amr SSA, Abujazar MSS, Alazaiza MYD, Albahnasawi A, Bashir MJK, Nassani DE. The potential use of natural coagulants for microalgae harvesting: a review. Water Qual Res J 2023;58. https://doi.org/10.2166/wqrj.2022.026.
  15. Li M, Peng J, Lu Z, Zhu P. Research progress on carbon sources and sinks of farmland ecosystems. Resour Environ Sustain 2023;11. https://doi.org/10.1016/j.resenv.2022.100099.
  16. Ortega-Hernandez JM, Qiu D, Pla-García J, Yuanxun Z, Martinez-Frias J, Long X, et al. Key factors in developing controlled closed ecosystems for lunar missions. Resour Environ Sustain 2024;16. https://doi.org/10.1016/j.resenv.2024.100160.
  17. Mirella da Silva L, Mena IF, Sáez C, Motheo AJ, Rodrigo MA. Remediation of soils contaminated with methomyl using electrochemically produced gaseous oxidants. Chemosphere 2024;362. https://doi.org/10.1016/j.chemosphere.2024.142653.
  18. Syafrudin, Sarminingsih A, Juliani H, Budihardjo MA, Puspita AS, Mirhan SAA. Water Quality Monitoring System for Temperature, pH, Turbidity, DO, BOD, and COD Parameters Based on Internet of Things in the Garang Watershed. Ecol Eng Environ Technol 2024;25:1–16. https://doi.org/10.12912/27197050/174412.
  19. Jiang Y, Huang Z, Li L, Dong Q. Local–global dual attention network (LGANet) for population estimation using remote sensing imagery. Resour Environ Sustain 2023;14. https://doi.org/10.1016/j.resenv.2023.100136.
  20. Hijazi DA, BiBi A, Al-Ghouti MA. Sustainable waste utilization: Geopolymeric fly ash waste as an effective phenol adsorbent for environmental remediation. Resour Environ Sustain 2024;15. https://doi.org/10.1016/j.resenv.2023.100142.
  21. Pal B, Samanta S, Pal DK. using remote sensing and GIS techniques 2012. https://www.ijaet.org/media/0004/37I6-IJAET0612635.pdf
  22. Shaikh M, Birajdar F. Analysis of Watershed Characteristics Using Remote Sensing and GIS Techniques. International Journal of Innovative Research in Science, Engineering and Technology 2015;4:1971–6. https://doi.org/10.15680/IJIRSET.2015.0404023.
  23. Faizel H, Balkhi SAA, Vijayanandan A. Variability in excitation–emission spectra among wastewater treatment units and applications of fluorescence-based water quality monitoring. Water Qual Res J 2024;59:159–69. https://doi.org/10.2166/wqrj.2024.003.
  24. Werkneh AA, Gebru SB. Development of ecological sanitation approaches for integrated recovery of biogas, nutrients and clean water from domestic wastewater. Resour Environ Sustain 2023;11. https://doi.org/10.1016/j.resenv.2022.100095.
  25. Fletcher J, Willby N, Oliver DM, Quilliam RS. Resource recovery and freshwater ecosystem restoration — Prospecting for phytoremediation potential in wild macrophyte stands. Resour Environ Sustain 2022;7. https://doi.org/10.1016/j.resenv.2022.100050.
  26. Yasmin F, Sakib TU, Emon SZ, Bari L, Sultana GNN. The physicochemical and microbiological quality assessment of Maddhapara hard rock-mine discharged water in Dinajpur, Bangladesh. Resour Environ Sustain 2022;8. https://doi.org/10.1016/j.resenv.2022.100061.
  27. Santoso AD. Keragaan Nilai DO, BOD dan COD di Danau Bekas Tambang Batubara Studi Kasus pada Danau Sangatta North PT. KPC di Kalimatan Timur. J Teknol Lingkung 2018;19:89. https://doi.org/10.29122/jtl.v19i1.2511. https://www.researchgate.net/publication/323146081_Keragaan_Nilai_DO_BOD_dan_COD_di_Danau_Bekas_Tambang_Batubara_Studi_Kasus_pada_Danau_Sangatta_North_PT_KPC_di_Kalimatan_Timur
  28. Zammi M, Rahmawati A, Nirwana RR. Analisis Dampak Limbah Buangan Limbah Pabrik Batik di Sungai Simbangkulon Kab. Pekalongan. Walisongo J Chem 2018;1:1. https://doi.org/10.21580/wjc.v2i1.2667.
  29. Menteri Lingkungan Hidup Dan Kehutanan Republik Indonesia. No.68 Tahun 2016 PL: Baku Mutu Air Limbah Domestik. Peraturan Menteri Lingkung Hidup Dan Kehutan Republik Indones 2016:1–13. https://ppkl.menlhk.go.id/website/filebox/5/170314114854P.68%20BAKU%20MUTU%20LIMBAH%20DOMESTIK.pdf
  30. Sari SM, Kumolontang WJN, Warouw VRC. Analisis kadar hara nitrogen total pada tanah sawah di tapadaka kecamatan dumoga tenggara kabupaten bolaang mongondow. Soil Environ 2021;21:29–33. https://doi.org/10.35791/se.21.3.2021.38762 https://ejournal.unsrat.ac.id/v3/index.php/soilenvironmental/article/view/38762
  31. Departemen Pertanian. Pedoman Teknis Pengkajian Pemanfaatan Air Limbah Dari Industri Minyak Sawit Pada Tanah Di Perkebunan Kelapa Sawit 2009;1:86–8. https://toolsfortransformation.net/wp-content/uploads/2017/05/28-tahun-2003-Pedoman-pemanfaatan-air-limbah.pdf
  32. He Z, Wang H, Liu W, Sun J, Huang J, Han J, et al. A novel self-enhanced electrochemiluminescent aptamer sensor based on ternary nanocomposite PEI/RuSi-MWCNTs for the detection of profenofos residues in vegetables. Heliyon 2024;10. https://doi.org/10.1016/j.heliyon.2024.e25167.
  33. Meng S, Chen X, Song C, Fan L, Qiu L, Zheng Y, et al. Effect of Chronic Exposure to Pesticide Methomyl on Antioxidant Defense System in Testis of Tilapia ( Oreochromis niloticus ) and Its Recovery Pattern. Applied Sciences 2021;11:3332. https://doi.org/10.3390/app11083332
  34. Puspita L, Hidayah N, Indrawan AR, Carolina HS. Analysis of Science Process Skills : The Impact of Project-Based Learning Assisted by Mind Mapping on Biology Subjects. Biosfer : Jurnal Tadris Biologi 2024;15:179–91. https://dx.doi.org/10.24042/biosfer.v15i2.25564.
  35. KN AR, Khastini RO, Hardianti F. Freshwater Trophic State of Sindang Heula Dam in Terms of Chlorophyl Content. Biosf J Tadris Biol 2022;13:83–92. https://doi.org/10.24042/biosfer.v13i1.10472.
  36. Endale Y, Samuel ZA, Kebede S, Bayu AB. Blended natural and synthetic coagulants for the COD and BOD removal from surface water; optimization by response surface methodology: The case of Gibe river. Heliyon 2024;10. https://doi.org/10.1016/j.heliyon.2024.e37961.
  37. Kinnunen J, Rossi PM, Herrmann I, Ronkanen AK, Heiderscheidt E. Factors affecting effluent quality in on-site wastewater treatment systems in the cold climates of Finland and Sweden. J Clean Prod 2023;404:136756. https://doi.org/10.1016/j.jclepro.2023.136756.