The Application of Nanotechnology-Based Liquid Organic Fertilizer for Improving the Quality of Hydroponically Grown Vegetables
##plugins.themes.academic_pro.article.main##
Abstract
Hydroponics, a farming technique using nutrient-enriched water, has been widely practiced due to its suitability for limited agricultural land. One of the key factors affecting hydroponic efficiency is the nutrient blend, with AB Mix and liquid organic fertilizer playing a crucial role. This study aims to evaluate the potential of nanotechnology-based nutrient solution in hydroponic to enhance nutrient absorption and improve plant growth in different vegetable species. Five vegetable species, which include red lettuce, red spinach, green spinach, pakcoy, and kailan, were selected to assess the interaction between nutrient composition and vegetable species. A study with factorial design was conducted using a randomized complete block design (RCBD). The primary factor was the fertilizer composition and the secondary factor was the type of vegetable. The treatments consisted of Control (Well water + AB Mix), P1 (Nanotechnology water + 100% AB Mix), P2 (Nanotechnology water + 25% nanotechnology liquid organic fertilizer + 75% AB Mix), P3 (Nanotechnology water + 50% nanotechnology liquid organic fertilizer + 50% AB Mix), P4 (Nanotechnology water + 75% nanotechnology liquid organic fertilizer + 25% AB Mix), and P5 (Nanotechnology water + 100% nanotechnology liquid organic fertilizer). Growth parameters measured included plant height, fresh weight, dry weight, number of leaves, and leaf area. Data were evaluated using a two-way ANOVA to assess the effects of fertilizer composition and vegetable type, followed by a 5% DMRT test for mean comparison. The findings indicated that the use of liquid organic fertilizer technology influenced plant growth. The most optimal average growth was recorded in the P2 treatment (a combination of nanotechnology water, 25% nanotechnology liquid organic fertilizer, and 75% AB Mix), while the least favorable result was observed in P5 (nanotechnology water combined with 100% nanotechnology liquid organic fertilizer).
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Peters CJ, Picardy J, Darrouzet-Nardi AF, Wilkins JL, Griffin TS, Fick GW. Carrying capacity of U.S. agricultural land: Ten diet scenarios. Elementa 2016;2016:1–15. https://doi.org/10.12952/journal.elementa.000116.
- Hartanto I, Fevria R. Analysis of kale (Brasicca oleraceae) crop cultivation using verticulture method in the city of padang panjang. J Phys Conf Ser 2019;1317. https://doi.org/10.1088/1742-6596/1317/1/012073.
- Abdillah A, Widianingsih I, Buchari RA, Nurasa H. Implications of urban farming on urban resilience in Indonesia: Systematic literature review and research identification. Cogent Food Agric 2023;9. https://doi.org/10.1080/23311932.2023.2216484.
- Rajaseger G, Chan KL, Tan KY, Ramasamy S, Khin MC, Anburaj A, et al. Hydroponics: current trends in sustainable crop production. Bioinformation 2023;19:925–938. https://doi.org/10.6026/97320630019925.
- Latue T, Latue PC, Rakuasa H. Bandung Gardening: Hydroponic Salads. Nusant J Behav Soc Sci 2023;2:25–30. https://doi.org/10.47679/202330.
- Fevria R, Farma SA, Vauzia, Edwin, Purnamasari D. Comparison of Nutritional Content of Spinach (Amaranthus gangeticus L.) Cultivated Hydroponically and Non-Hydroponically. Eksakta Berk Ilm Bid MIPS 2021;22:46–53. https://doi.org/10.24036/eksakta/vol22-iss1/243.
- Yulia AE, Murniati, Dini IR, Manja L. The effect of combination of AB-mix nutrition with liquid organic fertilizer of tofu liquid waste on hydroponical growth and production of lettage (Lactuca sativa L.). Int J Sci Res Arch 2021;4:165–170. https://doi.org/10.30574/ijsra.2021.4.1.0190.
- Sugiarto Y, Nugrayani TR, Hakim L, Djoyowasito G, Zhang J. Enhancing spinach (Amaranthus tricolor L.) growth using maggot fermentation-derived liquid organic fertilizer and AB mix in drip fertigation systems. J Keteknikan Pertan Trop dan Biosist 2024;12:105–113. https://doi.org/10.21776/ub.jkptb.2024.012.02.04.
- Haryanta D, Sa’adah TT, Thohiron M, Rejeki FS. Utilization of urban waste as liquid organic fertilizer for vegetable crops in urban farming system. Plant Sci Today 2023;10:120–128. https://doi.org/10.14719/pst.2028.
- Zhang C, Xiao H, Du Q, Wang J. Hydroponics with split nutrient solution improves cucumber growth and productivity. J Soil Sci Plant Nutr 2023;23:446–455. https://doi.org/10.1007/s42729-022-01056-8.
- Baiyin B, Tagawa K, Yamada M, Wang X, Yamada S, Shao Y, et al. Effect of nutrient solution flow rate on hydroponic plant growth and root morphology. Plants 2021;10:1–11. https://doi.org/10.3390/plants10091840.
- Putri RME, Fevria R, Violita, M D. Effect of nano technology ecoenzyme on the growth of pakcoy (Brassica rapa L .) cultivated hydroponically. J Produksi Tanam 2023;11:349–358. https://doi.org/10.21776/ub.protan.2023.011.06.01.
- Sangeetha T, Periyathambi E. Automatic nutrient estimator: distributing nutrient solution in hydroponic plants based on plant growth. PeerJ Comput Sci 2024;10:1–28. https://doi.org/10.7717/peerj-cs.1871.
- Sambo P, Nicoletto C, Giro A, Pii Y, Valentinuzzi F, Mimmo T, et al. Hydroponic solutions for soilless production systems: Issues and opportunities in a smart agriculture perspective. Front Plant Sci 2019;10. https://doi.org/10.3389/fpls.2019.00923.
- Achari GA, Kowshik M. Recent developments on nanotechnology in agriculture: Plant mineral nutrition, health, and interactions with soil microflora. J Agric Food Chem 2018;66:8647–8661. https://doi.org/10.1021/acs.jafc.8b00691.
- Usman M, Farooq M, Wakeel A, Nawaz A, Cheema SA, Rehman H ur, et al. Nanotechnology in agriculture: Current status, challenges and future opportunities. Sci Total Environ 2020;721:137778. https://doi.org/10.1016/j.scitotenv.2020.137778.
- Fevria R, Razak A, Heldi, Syah N, Kamal E, Edwin. Application of nanotechnology liquid organic fertilizer in sustainable hydroponic cultivation for urban food security. Sci Technol Asia 2023;28:295–304. https://doi.org/10.14456/scitechasia.2023.89.
- Shang Y, Hasan MK, Ahammed GJ, Li M, Yin H, Zhou J. Applications of nanotechnology in plant growth and crop protection: A review. Molecules 2019;24. https://doi.org/10.3390/molecules24142558.
- Zulfiqar F, Navarro M, Ashraf M, Akram NA, Munné-Bosch S. Nanofertilizer use for sustainable agriculture: Advantages and limitations. Plant Sci 2019;289:110270. https://doi.org/10.1016/j.plantsci.2019.110270.
- Mirbakhsh M. Role of nano-fertilizer in plants nutrient use efficiency (NUE). J Genet Eng Biotechnol Res 2023;5:75–81. https://doi.org/10.33140/jgebr.05.02.01.
- Prasad R, Bhattacharyya A, Nguyen QD. Nanotechnology in sustainable agriculture: Recent developments, challenges, and perspectives. Front Microbiol 2017;8:1–13. https://doi.org/10.3389/fmicb.2017.01014.
- Hemalatha M, Visantini P. Potential use of eco-enzyme for the treatment of metal based effluent. IOP Conf Ser Mater Sci Eng 2020;716. https://doi.org/10.1088/1757-899X/716/1/012016.
- Wang Y, Wang S, Sun J, Dai H, Zhang B, Xiang W, et al. Nanobubbles promote nutrient utilization and plant growth in rice by upregulating nutrient uptake genes and stimulating growth hormone production. Sci Total Environ 2021;800:149627. https://doi.org/10.1016/j.scitotenv.2021.149627.
- Phibunwatthanawong T, Riddech N. Liquid organic fertilizer production for growing vegetables under hydroponic condition. Int J Recycl Org Waste Agric 2019;8:369–380. https://doi.org/10.1007/s40093-019-0257-7.
- Marginingsih RS, Nugroho AS, Dzakiy MA. Pengaruh substitusi pupuk organik cair pada nutrisi AB mix terhadap pertumbuhan caisim (Brassica juncea L.) pada hidroponik drip irrigation system. J Biol dan Pembelajarannya 2018;5:44–51. https://doi.org/10.29407/jbp.v5i1.12034.
- Muhadiansyah TO, Setyono, Adimihardja SA. Efektivitas pencampuran pupuk organik cair dalam nutrisi hidroponik pada pertumbuhan dan produksi tanaman selada (Lactuca sativa L.). J Agronida 2016;2:37–46. https://doi.org/10.30997/jag.v2i1.749.
- Fevria R, Aliciafarma S, Vauzia, Edwin. Comparison of nutritional content of water spinach (Ipomoea aquatica) cultivated hydroponically and non-hydroponically. J Phys Conf Ser 2021;1940:012049. https://doi.org/10.1088/1742-6596/1940/1/012049.
- Subakti MR, Nurhayati, Rahayu MS. The effect of concentration of ab mix and zpt solutions on the growth and production of mustard plants (Brassica juncea L.) in hydroponic wick systems. E3S Web Conf 2022;339:2–8. https://doi.org/10.1051/e3sconf/202233901010.
- Park HB, Park SY, Park IS, Jang IB, Hyun DY, Lee CW, et al. Influence of nutrient solution concentration on growth and tissue mineral content of Panax ginseng seedlings cultured in a root medium containing peat and perlite. Hortic Environ Biotechnol 2020;61:715–724. https://doi.org/10.1007/s13580-020-00262-6.
- Nasir N, Sato T. Effect of nutrient solution concentration on growth, yield, and fruit quality of tomato grown hydroponically in single-truss production system. J Hortic Res 2023;31:127–144. https://doi.org/10.2478/johr-2023-0034.
- Andrian D, Tantawi AR, Rahman A. The use of liquid organic fertilizer as growth media and production of kangkung (Ipomoea reptans Poir) hydroponics. Budapest Int Res Exact Sci J 2019;1:23–34. https://doi.org/10.33258/birex.v1i1.132.
- Sari VI, Maarif MS, Arkeman Y. Inovasi teknologi nano untuk composting tandan kosong kelapa sawit. J Tek Ind 2014;4. https://doi.org/10.25105/jti.v4i2.1556.
- Kyebogola S, Kabiri S, Onwonga RN, Semalulu O, Yost RS, Sseruwu G. Greener Production and Application of Slow-Release Nitrogen Fertilizer Using Plasma and Nanotechnology: A Review. Sustain 2024;16. https://doi.org/10.3390/su16229609.