Metagenomic Bioprospecting for Lignocellulosic Enzymes from Bacterial Communities of Humus Obtained from Natural and Man-Made Forests in Tomohon, North Sulawesi, Indonesia
##plugins.themes.academic_pro.article.main##
Abstract
Lignocellulosic biomass degradation is crucial for various industrial applications. Traditional enzyme discovery methods, limited by culturing constraints, fail to capture the vast enzymatic potential of uncultured microorganisms. Metagenomic bioprospecting provides a culture-independent avenue to explore this untapped genetic diversity. This research characterizes the microbial communities and their functional capabilities in a natural forest (Mahawu Mountain Forest, MMF) and a man-made forest (Tomohon City Forest, TCF) located in North Sulawesi, Indonesia, aiming to assess the influence of forest type on microbial ecological dynamics and lignocellulose degradation mechanisms. Comparative soil analysis revealed MMF had slightly alkaline pH (7.1), cooler temperature (21°C), and dark grayish-brown Andosol, while TCF exhibited a neutral pH (6.9), warmer temperature (23°C), and brown Andosol. High-throughput 16S rRNA sequencing demonstrated that TCF harbors greater bacterial richness (125 vs. 91 observed OTUs) and diversity (Shannon index 4.44 vs. 4.11), likely influenced by anthropogenic activities. Taxonomic profiling showed that Proteobacteria dominate both sites (MMF: 42.37%; TCF: 56.08%), with Actinobacteria significantly more abundant in MMF (34.08% vs. 5.84%). Functional prediction via PICRUSt analysis highlighted TCF’s enrichment in stress-responsive genes and ABC transporters, whereas MMF exhibited elevated lipid metabolism and specialized lignin-degradation pathways (e.g., 3-hydroxyphenylacetate degradation). These findings suggest that TCF's heterogeneous environment supports microbial versatility, while MMF's stable conditions promote specialization in decomposition. Both forests represent promising reservoirs for lignocellulolytic enzyme discovery, with implications for sustainable biotechnological applications. This study underscores the importance of forest management in shaping soil microbial communities and highlights the value of preserving natural ecosystems for future bioresource exploration.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Yadav A, Sharma V, Tsai ML, Chen CW, Sun PP, Nargotra P, et al. Development of lignocellulosic biorefineries for the sustainable production of biofuels: Towards circular bioeconomy. Bioresour Technol 2023;381:129145. https://doi.org/10.1016/J.BIORTECH.2023.129145.
- Berlemont R, Martiny AC. Genomic potential for polysaccharide deconstruction in bacteria. Appl Environ Microbiol 2015;81:1513–9. https://doi.org/10.1128/AEM.03718-14/SUPPL_FILE/ZAM999116043SO1.PDF.
- Lynd LR, Weimer PJ, van Zyl WH, Pretorius IS. Microbial Cellulose Utilization: Fundamentals and Biotechnology. Microbiology and Molecular Biology Reviews 2002;66:506–77. https://doi.org/10.1128/MMBR.66.3.506-577.2002/ASSET/6F6A28CF-2C07-40BC-B7A7-BAF0F705A33E/ASSETS/GRAPHIC/MR032001411T.JPEG.
- Mukherjee G, Dhiman G, Akhtar N. Efficient Hydrolysis of Lignocellulosic Biomass: Potential Challenges and Future Perspectives for Biorefineries. Environmental Science and Engineering (Subseries: Environmental Science) 2017:213–37. https://doi.org/10.1007/978-3-319-48439-6_17.
- Baldrian P. Microbial activity and the dynamics of ecosystem processes in forest soils. Curr Opin Microbiol 2017;37:128–34. https://doi.org/10.1016/J.MIB.2017.06.008.
- Osorio-González CS, Chaali M, Hegde K, Brar SK, Kermanshahipour A, Avalos-Ramírez A. Production and Processing of the Enzymes from Lignocellulosic Biomass. Green Energy and Technology 2020:221–43. https://doi.org/10.1007/978-3-030-38032-8_11.
- Singhania RR, Ruiz HA, Awasthi MK, Dong C Di, Chen CW, Patel AK. Challenges in cellulase bioprocess for biofuel applications. Renewable and Sustainable Energy Reviews 2021;151:111622. https://doi.org/10.1016/J.RSER.2021.111622.
- Jan U, Feiwen R, Masood J, Chun SC. Characterization of Soil Microorganism from Humus and Indigenous Microorganism Amendments. Mycobiology 2020;48:392–8. https://doi.org/10.1080/12298093.2020.1816154.
- Verma N, Kumar V, Bansal MC. Valorization of Waste Biomass in Fermentative Production of Cellulases: A Review. Waste Biomass Valorization 2021;12:613–40. https://doi.org/10.1007/S12649-020-01048-8/METRICS.
- Soni SK, Sharma A, Soni R. Cellulases: Role in Lignocellulosic Biomass Utilization. Methods in Molecular Biology 2018;1796:3–23. https://doi.org/10.1007/978-1-4939-7877-9_1.
- Nargotra P, Sharma V, Lee YC, Tsai YH, Liu YC, Shieh CJ, et al. Microbial Lignocellulolytic Enzymes for the Effective Valorization of Lignocellulosic Biomass: A Review. Catalysts 2022;13:83. https://doi.org/10.3390/CATAL13010083.
- Yadav S, Reddy B, Dubey SK. De novo genome assembly and comparative annotation reveals metabolic versatility in cellulolytic bacteria from cropland and forest soils. Funct Integr Genomics 2020;20:89–101. https://doi.org/10.1007/S10142-019-00704-0/METRICS.
- Kukkar D, Sharma PK, Kim KH. Recent advances in metagenomic analysis of different ecological niches for enhanced biodegradation of recalcitrant lignocellulosic biomass. Environ Res 2022;215:114369. https://doi.org/10.1016/J.ENVRES.2022.114369.
- López-Mondéjar R, Zühlke D, Becher D, Riedel K, Baldrian P. Cellulose and hemicellulose decomposition by forest soil bacteria proceeds by the action of structurally variable enzymatic systems. Scientific Reports 2016;6:1–12. https://doi.org/10.1038/srep25279.
- Nadhifah H, Rahmani N, Mangunwardoyo W, Yopi, Atikana A, Ratnakomala S, et al. Xylanopectinolytic enzymes by marine actinomycetes from sediments of Sarena Kecil, North Sulawesi: high potential to produce galacturonic acid and xylooligosaccharides from raw biomass. Journal of Genetic Engineering and Biotechnology 2023;21:31. https://doi.org/10.1186/S43141-023-00488-8.
- Handayani I, Saad H, Ratnakomala S, Lisdiyanti P, Kusharyoto W, Krause J, et al. Mining indonesian microbial biodiversity for novel natural compounds by a combined genome mining and molecular networking approach. Mar Drugs 2021;19:316. https://doi.org/10.3390/MD19060316/S1.
- Straw CM, Henry GM, Love K, Carrow RN, Cline V. Evaluation of Several Sampling Procedures for Spatial Analysis of Natural Turfgrass Sports Field Properties. J Test Eval 2018;46:714–29. https://doi.org/10.1520/JTE20160467.
- Thijs S, De Beeck MO, Beckers B, Truyens S, Stevens V, Van Hamme JD, et al. Comparative evaluation of four bacteria-specific primer pairs for 16S rRNA gene surveys. Front Microbiol 2017;8:251189. https://doi.org/10.3389/FMICB.2017.00494/BIBTEX.
- Bellemain E, Carlsen T, Brochmann C, Coissac E, Taberlet P, Kauserud H. ITS as an environmental DNA barcode for fungi: An in silico approach reveals potential PCR biases. BMC Microbiol 2010;10:1–9. https://doi.org/10.1186/1471-2180-10-189/TABLES/4.
- Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet J 2011;17:10. https://doi.org/10.14806/EJ.17.1.200.
- Yu H, Chen Z, Wan Y, Sun X. Temperature-humidity-density dependent evaporation behaviour of clay and sandy clay. Eur J Soil Sci 2024;75:e13484. https://doi.org/10.1111/EJSS.13484.
- Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, et al. Resistance and resilience of the forest soil microbiome to logging-associated compaction. ISME J 2014;8:226–44. https://doi.org/10.1038/ISMEJ.2013.141.
- Lladó S, López-Mondéjar R, Baldrian P. Forest Soil Bacteria: Diversity, Involvement in Ecosystem Processes, and Response to Global Change. Microbiology and Molecular Biology Reviews 2017;81. https://doi.org/10.1128/MMBR.00063-16/ASSET/F14C000C-59F6-4A9A-B45C-DB319A8584A8/ASSETS/GRAPHIC/ZMR0021724600003.JPEG.
- Zhu K, Liu T, Liu J, Cao X, Liu J, Wang J. Microbial degradation of lignocellulose. AIP Conf Proc 2021;2350. https://doi.org/10.1063/5.0048528/731276.
- Xue P, Minasny B, McBratney A, Pino V, Fajardo M, Luo Y. Distribution of soil bacteria involved in C cycling across extensive environmental and pedogenic gradients. Eur J Soil Sci 2023;74:e13337. https://doi.org/10.1111/EJSS.13337.
- Nikitina EP, Buyantueva LB, Abidueva EY, Sun CH. Taxonomic and ecophysiological characteristics of actinobacteria in soils of the dry steppe zone of the Selenga Highlands (Western Transbaikalia). Vavilovskii Zhurnal Genet Selektsii 2023;27:411–20. https://doi.org/10.18699/VJGB-23-49.
- Mersinkova Y, Yemendzhiev H, Kowalski A. Identification and Characterization of Natural Habitats of Electrochemically Active Bacteria. J Adv Biol Biotechnol 2020;23:19–25. https://doi.org/10.9734/JABB/2020/V23I130135.
- Nguyen VH, Wemheuer B, Song W, Bennett H, Palladino G, Burgsdorf I, et al. Functional characterization and taxonomic classification of novel gammaproteobacterial diversity in sponges. Syst Appl Microbiol 2023;46:126401. https://doi.org/10.1016/J.SYAPM.2023.126401.
- Saranraj P, Sayyed RZ, Sivasakthivelan P, Kokila M, Al-Tawaha ARM, Amala K, et al. Symbiotic Effectiveness of Rhizobium Strains in Agriculture. Plant Growth Promoting Microorganisms of Arid Region 2023:389–421. https://doi.org/10.1007/978-981-19-4124-5_18.
- Huang Z, Liu R, Chen F, Lai Q, Oren A, Shao Z. Nitrogeniibacter aestuarii sp. nov., a Novel Nitrogen-Fixing Bacterium Affiliated to the Family Zoogloeaceae and Phylogeny of the Family Zoogloeaceae Revisited. Front Microbiol 2021;12:755908. https://doi.org/10.3389/FMICB.2021.755908/BIBTEX.
- Norashirene MJ, Amin AA, Norhidayah D, Fithriah MAN. Identification of cellulolytic thermophiles based on 16S rDNA gene amplification analysis. CHUSER 2012 - 2012 IEEE Colloquium on Humanities, Science and Engineering Research 2012:413–8. https://doi.org/10.1109/CHUSER.2012.6504349.
- Kikuchi S, Fujitani H, Ishii K, Isshiki R, Sekiguchi Y, Tsuneda S. Characterisation of bacteria representing a novel Nitrosomonas clade: Physiology, genomics and distribution of missing ammonia oxidizer. Environ Microbiol Rep 2023;15:404–16. https://doi.org/10.1111/1758-2229.13158.
- Sly LI, Arunpairojana V, Hodgkinson MC. Pedomicrobium manganicum from Drinking-Water Distribution Systems with Manganese-Related “Dirty Water” Problems. Syst Appl Microbiol 1988;11:75–84. https://doi.org/10.1016/S0723-2020(88)80051-1.
- Zhu X, Fan F, Qiu H, Shao M, Li D, Yu Y, et al. New xylose transporters support the simultaneous consumption of glucose and xylose in Escherichia coli. MLife 2022;1:156–70. https://doi.org/10.1002/MLF2.12021.
- Cavaliere P, Brier S, Filipenko P, Sizun C, Raynal B, Bonnete F, et al. The stress sigma factor of RNA polymerase RpoS/σS is a solvent-exposed open molecule in solution. Biochemical Journal 2018;475:341–54. https://doi.org/10.1042/BCJ20170768.
- Zhong R, Cui D, Richardson EA, Phillips DR, Azadi P, Lu G, et al. Cytosolic Acetyl-CoA Generated by ATP-Citrate Lyase Is Essential for Acetylation of Cell Wall Polysaccharides. Plant Cell Physiol 2020;61:64–75. https://doi.org/10.1093/PCP/PCZ178.
- Li M, Xu X, Zou X, Hazelbauer GL. A Selective Tether Recruits Activated Response Regulator CheB to Its Chemoreceptor Substrate. MBio 2021;12. https://doi.org/10.1128/MBIO.03106-21/SUPPL_FILE/MBIO.03106-21-ST001.DOCX.
- Kabir M, Arif M, Ali F, Ahmad S, Swati ZNK, Yu DJ. Prediction of membrane protein types by exploring local discriminative information from evolutionary profiles. Anal Biochem 2019;564–565:123–32. https://doi.org/10.1016/J.AB.2018.10.027.
- Corkey BE, Deeney JT. The Redox Communication Network as a Regulator of Metabolism. Front Physiol 2020;11:567796. https://doi.org/10.3389/FPHYS.2020.567796/BIBTEX.
- Jardine KJ, McDowell N. Fermentation-mediated growth, signaling, and defense in plants. New Phytologist 2023;239:839–51. https://doi.org/10.1111/NPH.19015.
- Mikwa J, Gossens R, Defourny P. Forest degradation, a methodological approach using remote sensing techniques: A review. International Journal of Innovation and Scientific Research 2016;24:161–78. https://www.researchgate.net/publication/304299267_Forest_degradation_a_methodological_approach_using_remote_sensing_techniques_A_review.
- Houfani AA, Tláskal V, Baldrian P, Hahnke RL, Benallaoua S. Actinobacterial Strains as Genomic Candidates for Characterization of Genes Encoding Enzymes in Bioconversion of Lignocellulose. Waste Biomass Valorization 2022;13:1523–34. https://doi.org/10.1007/S12649-021-01595-8/METRICS.
- Georgiadou DN, Avramidis P, Ioannou E, Hatzinikolaou DG. Microbial bioprospecting for lignocellulose degradation at a unique Greek environment. Heliyon 2021;7. https://doi.org/10.1016/J.HELIYON.2021.E07122/ATTACHMENT/980CA4E1-822A-4A63-9DDB-12E91867EF33/MMC3.DOCX.
- Mujakić I, Piwosz K, Koblížek M. Phylum Gemmatimonadota and Its Role in the Environment. Microorganisms 2022;10:151. https://doi.org/10.3390/MICROORGANISMS10010151/S1.
- Nawaz MZ, Shang H, Sun J, Geng A, Ali SS, Zhu D. Genomic insights into the metabolic potential of a novel lignin-degrading and polyhydroxyalkanoates producing bacterium Pseudomonas sp. Hu109A. Chemosphere 2023;310:136754. https://doi.org/10.1016/J.CHEMOSPHERE.2022.136754.
- Ma S, Chen G, Tang W, Xing A, Chen X, Xiao W, et al. Inconsistent responses of soil microbial community structure and enzyme activity to nitrogen and phosphorus additions in two tropical forests. Plant Soil 2021;460:453–68. https://doi.org/10.1007/S11104-020-04805-9/METRICS.