Comparative Assessment of Antioxidant Properties Between In-Vitro Cultured Cat's Whiskers Leaves (Orthosiphon stamineus) and Quercetin
##plugins.themes.academic_pro.article.main##
Abstract
The present study investigates the antioxidant properties of in-vitro cultured leaves of cat's whiskers (Orthosiphon stamineus) compared to the well-known antioxidant quercetin. Antioxidants are crucial for neutralizing free radicals and play a significant role in protecting cells from oxidative stress, a contributing factor to various diseases and aging processes. The research aims to quantify and compare the radical scavenging activity of extracts from the in vitro cultured leaves and quercetin, using the DPPH method, a widely recognized assay in antioxidant research. Extraction involved macerating in-vitro cultured cat's whiskers leaves with 96% ethanol, which facilitates the dissolution of active phytochemicals. Antioxidant activity was subsequently assessed through the DPPH assay, where colorimetric change indicates the extract’s scavenging ability towards free radicals. The findings revealed that the in vitro cultured leaves extract exhibited a potent antioxidant activity, with an IC50 value of 0.74 μg/mL, significantly lower than quercetin’s IC50 value of 7.51 μg/mL. These results highlight the potential of in-vitro cultured cat's whiskers as a natural antioxidant source, suggesting possible applications in the food and pharmaceutical industries, where combating oxidative stress is essential for health maintenance and disease prevention. Further research is necessary to elucidate the specific biochemical pathways and mechanisms underpinning the antioxidant capacity of the in vitro cultured leaves extracts.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Boeira CP, Piovesan N, Soquetta MB, Flores DCB, Lucas BN, Barin JS, et al. Ultrasonic Assisted Extraction to Obtain Bioactive, Antioxidant and Antimicrobial Compounds from Marcela. Ciência Rural 2018;48. http://dx.doi.org/10.1590/0103-8478cr20170772.
- Satrianegara F, Tahar N, Rukmana R, Rauf A, Rahmi R, Putri SS, et al. The Effect of Various Extraction Methods and Solvents on the Phytochemical Contents and Antioxidant Capacities of Safflower Florets (Carthamus Tinctorius L.) from South Sulawesi. Trends Sci 2024;21:7576. https://tis.wu.ac.th/index.php/tis/article/view/7576.
- Witaszczyk A, Klimowicz A. Usefulness of Aloe Vera (Aloe Vera) as a Potential Ingredient of Cosmetic Preparations. Pomeranian J Life Sci 2023;69:76-87. http://dx.doi.org/10.21164/pomjlifesci.970.
- Fikayuniar L, Yuniarsih N, Abriyani E, Ayesha A. Dinamika Aktivitas Antioksidan Ekstrak Curcuma xanthorrhiza Roxb. dari Pengaruh Metode Maserasi dan Ultrasonik. J Buana Farma 2024;4:503–513. http://dx.doi.org/10.36805/jbf.v4i4.1226.
- Lewandowska N, Klimowicz A. Antioxidant Properties of Selected Parts of Syringa Vulgaris L. Pomeranian J Life Sci 2022;68:64-74. http://dx.doi.org/10.21164/pomjlifesci.860.
- Souza ID d., Melo ESP, Nascimento VA d., Pereira HS, Silva KRN, Espindola PR, et al. Potential Health Risks of Macro‐ and Microelements in Commercial Medicinal Plants Used to Treatment of Diabetes. Biomed Res Int 2021;2021. https://doi.org/10.1155/2021/6678931.
- Nazirah M, S. EY, Hafiz AMM, Sani SM. A Review of Antioxidant Potential From Seaweeds - Extraction, Characterization, Benefits and Applications. Food Res 2023;6:58–64. https://www.myfoodresearch.com/uploads/8/4/8/5/84855864/_7__fr-afobmcis-008_nazirah.pdf.
- Faramayuda F, Mariani TS, Elfahmi, Sukrasno. Influence of elicitation and precursors on major secondary metabolite production in cultures of purple Orthosiphon aristatus Blume Miq. Biocatal Agric Biotechnol 2022;42:102324. https://www.sciencedirect.com/science/article/pii/S1878818122000512.
- Salasa AM, Ratnah S, Abdullah T. Kandungan Total Flavonoid dan Aktivitas Antioksidan Ekstrak Daun Kumis Kucing (Orthosiphon Stamineus B.). Media Farm 2021;17:162. http://dx.doi.org/10.32382/mf.v17i2.2292.
- Ariff MAM, Abdullah N. Optimization of Reflux Extraction for Cat’s Whiskers Leaves Extract Using Response Surface Methodology. Chem Ind Chem Eng Q 2020;26:49–57. http://dx.doi.org/10.2298/CICEQ190228024A.
- Nurcholis W, Mahendra FR, Gultom MF, Khoirunnisa S, Kurnia MAC, Harahap H. Phytochemical, Antioxidant and Antibacterial Screening of Orthosiphon Stamineus Leaf Extract Two Phenotypes. J Jamu Indonesia 2022;7:121–129. https://doi.org/10.29244/jji.v7i3.280.
- Faramayuda F, Mariani TS, Elfahmi, Sukrasno. Micropropagation and secondary metabolites content of white-purple varieties of orthosiphon aristatus blume miq. Pakistan J Biol Sci 2021;24:858–867. https://doi.org/10.3923/pjbs.2021.858.867.
- Kiss A, Papp VA, Pal A, Prokisch J, Mirani S, Tóth B, et al. Comparative Study on Antioxidant Capacity of Diverse Food Matrices: Applicability, Suitability and Inter-Correlation of Multiple Assays to Assess Polyphenol and Antioxidant Status. Antioxidants 2025;14:317. https://doi.org/10.3390/antiox14030317.
- Apak R, Özyürek M, Güçlü K, Çapanoğlu E. Antioxidant Activity/Capacity Measurement. 2. Hydrogen Atom Transfer (HAT)-Based, Mixed-Mode (Electron Transfer (ET)/HAT), and Lipid Peroxidation Assays. J Agric Food Chem 2016;64:1028–1045. https://doi.org/10.1021/acs.jafc.5b04743.
- Sadeer NB, Montesano D, Albrizio S, Zengin G, Mahomoodally MF. The Versatility of Antioxidant Assays in Food Science and Safety—Chemistry, Applications, Strengths, and Limitations. Antioxidants 2020;9:709. https://doi.org/10.3390/antiox9080709.
- Danet AF. Recent Advances in Antioxidant Capacity Assays; 2021. https://doi.org/10.5772/intechopen.96654.
- Chen S, Li X, Liu X, Wang N, An Q, Ye XM, et al. Investigation of Chemical Composition, Antioxidant Activity, and the Effects of Alfalfa Flavonoids on Growth Performance. Oxid Med Cell Longev 2020;2020:1–11. https://doi.org/10.1155/2020/8569237.
- Geng R, Ma L, Liu L, Xie Y. Influence of Bovine Serum Albumin-Flavonoid Interaction on the Antioxidant Activity of Dietary Flavonoids: New Evidence from Electrochemical Quantification. Molecules 2018;24:70. https://doi.org/10.3390/molecules24010070.
- Zhou X, Liu D, Hadiatullah H, Guo T, Yao Y, Li C, et al. Evaluating the Total Antioxidant Capacity of Processed Milk: Utilising Applicable Antioxidant Assays and Key Antioxidant Components. Int J Food Sci Technol 2023;59:1351–1362. https://doi.org/10.1111/ijfs.16876.
- Yeo J, Shahidi F. Critical Re-Evaluation of DPPH Assay: Presence of Pigments Affects the Results. J Agric Food Chem 2019;67:7526–7529. https://doi.org/10.1021/acs.jafc.9b02462.
- Munteanu IG, Apetrei C. Analytical Methods Used in Determining Antioxidant Activity: A Review. Int J Mol Sci 2021;22:3380. https://doi.org/10.3390/ijms22073380.
- Lee KJ, Oh YC, Cho WK, Yeul J. Antioxidant and Anti-Inflammatory Activity Determination of One Hundred Kinds of Pure Chemical Compounds Using Offline and Online Screening HPLC Assay. Evidence-Based Complement Altern Med 2015;2015:1–13. https://doi.org/10.1155/2015/165457.
- Frezzini MA, Castellani F, Francesco ND, Ristorini M, Canepari S. Application of DPPH Assay for Assessment of Particulate Matter Reducing Properties. Atmosphere (Basel) 2019;10:816. https://doi.org/10.3390/atmos10120816.
- Jamshidi N, Jamshidi N, Zaman MA, Chehresaz M, Roshan-Farzad F, Chaleshi V, et al. Medicago Sativa Extracts Enhance the Anticancer Efficacy of GEM in PANC-1 Cells Through Apoptosis Induction and BAX/BCL-2/CASP3 Expression Modulation. APJCP 2025;26:1689-1700. https://doi.org/10.31557/apjcp.2025.26.5.1689.
- Barreta C, Bramorski A, Knecht H, Faqueti L, Lubschinski TL, Dalmarco EM, et al. In Vitro Antioxidant and Anti-Inflamatory Activty of a Eugenia Umbellflora Phloroglucinol; 2023. http://dx.doi.org/10.21203/rs.3.rs-3182093/v1.
- Yusof Z, Ramasamy S, Mahmood NZ, Yaacob JS. Vermicompost Supplementation Improves the Stability of Bioactive Anthocyanin and Phenolic Compounds in Clinacanthus Nutans Lindau. Molecules 2018;23:1345. https://doi.org/10.3390/molecules23061345.
- Elansary HO, Szopa A, Klimek-Szczykutowicz M, Jafernik K, Ekiert H, Mahmoud EA, et al. Mammillaria Species—Polyphenols Studies and Anti-Cancer, Anti-Oxidant, and Anti-Bacterial Activities. Molecules 2019;25:131. https://doi.org/10.3390/molecules25010131.
- Selvaraj S, Fathima NN. Fenugreek Incorporated Silk Fibroin Nanofibers—A Potential Antioxidant Scaffold for Enhanced Wound Healing. ACS Appl Mater Interfaces 2017;9:5916–5926. https://doi.org/10.1021/acsami.6b16306.
- Polile RP, Hlokoane O, Matamane RP. Analysis of Phytochemical Profile, Ferric Reducing Power, H2O2 Scavenging Activity and 2, 2-Diphenyl-1-Picrylhydrazyl (DPPH) Radical Scavenging Activity of Extracts From Aerial Parts of Pseudognaphalium Undulatum. J Med Plants Stud 2021;9:106–112. http://dx.doi.org/10.22271/plants.2021.v9.i5b.1336.
- Maneenin C, Burawat J, Maneenin N, Nualkaew S, Arun S, Sampannang A, et al. Antioxidant Capacity of Momordica Charantia Extract and Its Protective Effect on Testicular Damage in Valproic Acid-Induced Rats. Int J Morphol 2018;36:447–453. http://dx.doi.org/10.4067/S0717-95022018000200447.
- Ashraf K, Halim H, Lim SM, Ramasamy K, Sultan S. In Vitro Antioxidant, Antimicrobial and Antiproliferative Studies of Four Different Extracts of Orthosiphon Stamineus, Gynura Procumbens and Ficus Deltoidea. Saudi J Biol Sci 2020;27:417–432. https://doi.org/10.1016/j.sjbs.2019.11.003.
- Ripim NSM, Fazil N, Ibrahim SNK, Bahtiar AA, Yip CW, Ibrahim N, et al. Antiviral Properties of Orthosiphon Stamineus Aqueous Extract in Herpes Simplex Virus Type 1 Infected Cells. Sains Malaysiana 2018;47:1725–1730. http://dx.doi.org/10.17576/jsm-2018-4708-11.
- Duc NH, Posta K. Inoculation With Septoglomus Constrictum Improves Tolerance to Heat Shock in Tomato Plants. Columella J Agric Environ Sci 2018;5:7–14. https://doi.org/10.18380/SZIE.COLUM.2018.5.2.7.
- Arshad A, Mahmood A, Bibi S, Javaid MM, Ali L, Nadeem M, et al. Biochar Application for Alleviating Nickel Stress and Enhancing Growth, Photosynthetic Pigments, and Antioxidant Defense Mechanisms in Sorghum; 2025. http://dx.doi.org/10.21203/rs.3.rs-6536755/v1.
- Tiika RJ, Duan H, Yang H, Cui G, Tian F, He Y, et al. Proline Metabolism Process and Antioxidant Potential of Lycium Ruthenicum Murr. In Response to NaCl Treatments. Int J Mol Sci 2023;24:13794. https://doi.org/10.3390/ijms241813794.
- Chang W, Sui X, Fan X, Jia T, Song F. Arbuscular Mycorrhizal Symbiosis Modulates Antioxidant Response and Ion Distribution in Salt-Stressed Elaeagnus Angustifolia Seedlings. Front Microbiol 2018;9. https://doi.org/10.3389/fmicb.2018.00652.
- Park CH, Park YE, Yeo HJ, Kim JK, Park SU. Effects of Light-Emitting Diodes on the Accumulation of Phenolic Compounds and Glucosinolates in Brassica Juncea Sprouts. Horticulturae 2020;6:77. https://doi.org/10.3390/horticulturae6040077.
- Ayyappan P, Singh M, Anusree SS, Kumar D, Sundaresan A, Raghu K. Antiperoxidative, Free Radical Scavenging and Metal Chelating Activities of Boerhaavia Diffusa L. J Food Biochem 2010;35:1548–1554. http://dx.doi.org/10.1111/j.1745-4514.2010.00477.x.