Spatial Characterization of NDVI-Based Vegetation Density in Smallholder Coffee Plantation on Mount Kawi’s Southern Slopes

##plugins.themes.academic_pro.article.main##

Dinna Hadi Sholikah
Nabilla Putry Maharani
Ramadhani Mahendra Kusuma
Dewi Shasa Bella
Yoga Gregorius Sembiring
Fitri Wijayanti
Soemarno Soemarno

Abstract

Indonesia’s coffee cultivation covers 1.25 million hectares, predominantly managed by smallholders (98.14%). Malang Regency, a key production area in East Java, experienced a sharp yield decline from 29,728 tonnes (2021) to 14,151 tonnes (2022). This study investigates smallholder plantations in the Kletek sub-watershed, emphasising the role of shade vegetation in coffee growth. Shade density critically influences productivity and ecological resilience. To support sustainable management, vegetation cover is assessed via remote sensing using the Normalised Difference Vegetation Index (NDVI), enabling spatial analysis of canopy structure. This research aims to analyse the types of coffee shade trees on smallholder coffee farms. NDVI is used to distinguish differences in land cover, including coffee shade. The study employed a land survey using the grid method with 30 observation points. Spatial analysis involves spectral transformation of Sentinel-2A Harmonised imagery, while statistical analysis uses correlation tests. Smallholder coffee farms in the Kletek Sub-watershed feature shade plants such as lamtoro, mahogany, and banana trees. NDVI values across these plantations ranged from moderate (0.4–0.5) to very high (>0.6) vegetation density, showing a strong correlation with land cover conditions (r = 0.80). This confirms NDVI as an effective remote sensing tool for assessing shade vegetation, significantly influencing coffee productivity and ecological resilience. The findings support NDVI-based monitoring for precision agriculture and adaptive management, with scalable applications in sustainable land-use planning, agroforestry optimisation, and climate-resilient coffee cultivation in regions such as Malang Regency, where production has declined.

##plugins.themes.academic_pro.article.details##

Author Biographies

Dinna Hadi Sholikah, Universitas Pembangunan Nasional Veteran

Department of Agrotechnology, Faculty of Agriculture

Nabilla Putry Maharani, Universitas Brawijaya

Department of Soil Science, Agrotechnology Study Program, Faculty of Agriculture

Ramadhani Mahendra Kusuma, Universitas Pembangunan Nasional Veteran

Department of Agrotechnology, Faculty of Agriculture

Dewi Shasa Bella, Universitas Pembangunan Nasional Veteran

Department of Agrotechnology, Faculty of Agriculture

Yoga Gregorius Sembiring, Universitas Pembangunan Nasional Veteran

Department of Agrotechnology, Faculty of Agriculture

Fitri Wijayanti, Universitas Pembangunan Nasional Veteran

Department of Agrotechnology, Faculty of Agriculture

Soemarno Soemarno, Universitas Brawijaya

Department of Soil Science, Agrotechnology Study Program, Faculty of Agriculture

How to Cite
1.
Sholikah DH, Maharani NP, Kusuma RM, Bella DS, Sembiring YG, Wijayanti F, Soemarno S. Spatial Characterization of NDVI-Based Vegetation Density in Smallholder Coffee Plantation on Mount Kawi’s Southern Slopes. J. appl. agricultural sci. technol. [Internet]. 2025Nov.30 [cited 2025Dec.1];9(4):557-69. Available from: https://www.jaast.org/index.php/jaast/article/view/494

References

  1. Saputera D. Analisis kinerja dan prospek komoditas kopi Indonesia di pasar domestik dan internasional. Jurnal Bisnis, Ekonomi, dan Sains 2021;1:87–95. https://journal.widyatama.ac.id/index.php/bes/article/view/826.
  2. Martauli ED. Analysis of coffee production in Indonesia. JASc (Journal of Agribusiness Sciences) 2018;1:112–120. https://jurnal.umsu.ac.id/index.php/JASc/article/view/1962/0.
  3. Direktorat Jenderal Perkebunan DJP. Statistik Perkebunan Unggulan Nasional 2020-2022. Jakarta: Kementrian Pertanian; 2023. https://ditjenbun.pertanian.go.id/template/uploads/2022/08/STATISTIK-UNGGULAN-2020-2022.pdf.
  4. Munashiroh AF, Santoso EB. Pengembangan Sektor Unggulan Komoditas Kopi di Kabupaten Malang dengan Konsep Agribisnis. Jurnal Teknik ITS 2021;9:F334–F339. https://www.neliti.com/id/publications/511423/pengembangan-sektor-unggulan-komoditas-kopi-di-kabupaten-malang-dengan-konsep-ag.
  5. Utami NR, Rahadian WR, Samuel S. Assistance for Increasing Community Resources Capacity in Implementing Community-Based Tourism Activities in Sukajadi Village, Bogor District. PKM-P 2022;6:302–305. http://dx.doi.org/10.32832/PKM-P.v6i2.1527.
  6. Muñoz-Villers LE, Geris J, Alvarado-Barrientos MS, Holwerda F, Dawson T. Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem. Hydrology and Earth System Sciences 2020;24:1649–1668. http://dx.doi.org/10.5194/hess-24-1649-2020.
  7. Lisnawati A, Lahjie AM, Simarangkir B, Yusuf S, Ruslim Y. Agroforestry system biodiversity of Arabica coffee cultivation in North Toraja district, South Sulawesi, Indonesia. Biodiversitas Journal of Biological Diversity 2017;18:741–751. https://doi.org/10.13057/biodiv/d180243.
  8. Tilden GM, Aranka JN, Curry GN. Ecosystem services in coffee agroforestry: their potential to improve labour efficiency amongst smallholder coffee producers. Agroforestry Systems 2024;98:383–400. https://link.springer.com/article/10.1007/s10457-023-00917-0.
  9. Alemu MM. Effect of tree shade on coffee crop production. Journal of Sustainable Development 2015;8:66. https://doi.org/10.5539/jsd.v8n9p66.
  10. Meylan L, Gary C, Allinne C, Ortiz J, Jackson L, Rapidel B. Evaluating the effect of shade trees on provision of ecosystem services in intensively managed coffee plantations. Agriculture, Ecosystems & Environment 2017;245:32–42. https://doi.org/10.1016/j.agee.2017.05.005.
  11. Krishidaya A, Hakim L, Hayati A. Etnobotani Tumbuhan Liar di Bawah Naungan Tegakan Kopi (Coffea sp.) pada Perkebunan Kopi di Dusun Krajan, Desa Jambuwer, Kecamatan Kromengan, Kabupaten Malang. SCISCITATIO 2022;3:16–26. https://core.ac.uk/download/525048860.pdf.
  12. Zulperi D, Ibrahim R, Ujat AH, Zali AZM, Ja’afar Y, Karam DS. Forest Pathology in Ecosystem Services. Tropical Forest Ecosystem Services in Improving Livelihoods For Local Communities, Springer; 2022, p. 15–28. http://dx.doi.org/10.1007/978-981-19-3342-4_2.
  13. Sholikah DH, Wicaksono KS, Soemarno. Pendugaan Produksi Kopi Berbasis Parameter Tanaman dan Penginderaan Jauh di Kebun Kopi Rakyat Kecamatan Wajak, Kabupaten Malang. AGROMIX 2023;14:114–124. https://doi.org/10.35891/agx.v14i1.3584.
  14. Lemenkova P, Debeir O. Multispectral satellite image analysis for computing vegetation indices by R in the Khartoum Region of Sudan, Northeast Africa. Journal of Imaging 2023;9:98. https://doi.org/10.3390/jimaging9050098.
  15. Huang S, Tang L, Hupy JP, Wang Y, Shao G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research 2021;32:1–6. http://dx.doi.org/10.1007/s11676-020-01176-w.
  16. Alves H, Volpato M, Vieira T, Maciel D, Gonçalves T, Dantas M. Characterization and spectral monitoring of coffee lands in Brazil. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 2016;41:801–803. http://dx.doi.org/10.5194/isprsarchives-XLI-B8-801-2016.
  17. Sholikah DH, Jamaluddin J, Hasyim AW, Rayes ML, Aditya HF, Soemarno S. Mesolandform classification and its relationship with smallholder coffee production in the Malang Regency, Indonesia. SAINS TANAH-Journal of Soil Science and Agroclimatology 2025;22:75–88. https://jurnal.uns.ac.id/tanah/article/view/93461.
  18. Tsakmakis I, Gikas G, Sylaios G. Integration of Sentinel-derived NDVI to reduce uncertainties in the operational field monitoring of maize. Agricultural Water Management 2021;255:106998. http://dx.doi.org/10.1016/j.agwat.2021.106998.
  19. Ullah W, Ahmad K, Ullah S, Tahir AA, Javed MF, Nazir A, et al. Analysis of the relationship among land surface temperature (LST), land use land cover (LULC), and normalized difference vegetation index (NDVI) with topographic elements in the lower Himalayan region. Heliyon 2023;9. http://dx.doi.org/10.1016/j.heliyon.2023.e13322.
  20. Klompmaker JO, Hoek G, Bloemsma LD, Gehring U, Strak M, Wijga AH, et al. Green space definition affects associations of green space with overweight and physical activity. Environmental Research 2018;160:531–540. https://doi.org/10.1016/j.envres.2017.10.027.
  21. Sholikah DH, Wicaksono KS, Soemarno S, Nita I, Damanik UR, Jauhary MRA, et al. Landslide mitigation through NDSI-based soil erodibility value prediction on coffee land in Wajak subdistrict, Malang Regency, East Java. Proceedings of the Transdisciplinary Symposium on Engineering and Technology (TSET) 2022: Development of Digital And Green Technology on Post Pandemic Era, vol. 3077, AIP Publishing; 2024. https://doi.org/10.1063/5.0209394.
  22. Karamesouti M, Detsis V, Kounalaki A, Vasiliou P, Salvati L, Kosmas C. Land-use and land degradation processes affecting soil resources: Evidence from a traditional Mediterranean cropland (Greece). Catena 2015;132:45–55. https://doi.org/10.1016/j.catena.2015.04.010.
  23. Meng L, Gao X, Li S, Lei J. Spatial and temporal characteristics of vegetation NDVI changes and the driving forces in Mongolia during 1982–2015. Remote Sensing 2020;12:603. http://dx.doi.org/10.3390/rs12040603.
  24. Dutta D, Rahman A, Paul S, Kundu A. Spatial and temporal trends of urban green spaces: An assessment using hyper-temporal NDVI datasets. Geocarto International 2022;37:7983–8003. https://doi.org/10.1080/10106049.2021.1989499.
  25. Putra AN, Kristiawati W, Mumtazydah DC, Anggarwati T, Annisa R, Sholikah DH, et al. Pineapple biomass estimation using unmanned aerial vehicle in various forcing stage: Vegetation index approach from ultra-high-resolution image. Smart Agricultural Technology 2021;1:100025. https://doi.org/10.1016/j.atech.2021.100025.
  26. Hartoyo APP, Sunkar A, Ramadani R, Faluthi S, Hidayati S. Normalized difference vegetation index (NDVI) analysis for vegetation cover in Leuser Ecosystem Area, Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity 2021;22:1160-1171. https://doi.org/10.13057/biodiv/d220311.
  27. Nogueira S, Moreira MA, Volpato MM. Relationship between coffee crop productivity and vegetation indexes derived from oli/landsat-8 sensor data with and without topographic correction. Engenharia Agrícola 2018;38:387–394. http://dx.doi.org/10.1590/1809-4430-eng.agric.v38n3p387-394/2018.
  28. Bolaños J, Corrales JC, Campo LV. Feasibility of early yield prediction per coffee tree based on multispectral aerial imagery: Case of arabica coffee crops in Cauca-Colombia. Remote Sensing 2023;15:282. https://doi.org/10.3390/rs15010282.
  29. dos Santos SA, Araújo G, Ferraz S, Figueiredo VC, Santana LS, Campos BFD. Supervised classification and NDVI calculation from remote piloted aircraft images for coffee plantations applications. Coffee Science-ISSN 1984-3909 2021;16:e161978–e161978. http://dx.doi.org/10.25186/.v16i.1978.
  30. Arafat S, Fauzan M, Fitria A, Budiyanto S. Water Soil Availability Prediction in Coffee Land Plantations with Remote Sensing. IOP Publishing, vol. 1364, IOP Publishing; 2024, p. 012056. http://dx.doi.org/10.1088/1755-1315/1364/1/012056.
  31. Imanda I, Kadir S, Harun MU, Mardiansyah W. A Comparative Assessment of Vegetation Diversity Under Coffee Plantations Inside and Outside Protected Forest Areas. Sriwijaya Journal of Environment 2022;7:73–79. http://ojs.pps.unsri.ac.id/index.php/ppsunsri/article/view/344/184.
  32. Alvarez-Alvarez EA, Almazán-Núñez RC, Gonzalez-Garcia F, Brito-Millan M, Mendez-Bahena A, Garcia-Ibanez S. Shade coffee plantations maintain woody plant diversity and structure in a cloud forest landscape of southern Mexico. Journal of Forestry Research 2021;32:637–648. http://dx.doi.org/10.1007/s11676-020-01143-5.
  33. Manson S, Nekaris KAI, Nijman V, Campera M. Effect of shade on biodiversity within coffee farms: A meta-analysis. Science of the Total Environment 2024:169882. https://doi.org/10.1016/j.scitotenv.2024.169882.
  34. Valencia V, García-Barrios L, West P, Sterling EJ, Naeem S. The role of coffee agroforestry in the conservation of tree diversity and community composition of native forests in a Biosphere Reserve. Agriculture, Ecosystems & Environment 2014;189:154–163. http://dx.doi.org/10.1016/j.agee.2014.03.024.
  35. Koutouleas A, Sarzynski T, Bordeaux M, Bosselmann AS, Campa C, Etienne H, et al. Shaded-coffee: A nature-based strategy for coffee production under climate change? A review. Frontiers in Sustainable Food Systems 2022;6:877476. http://dx.doi.org/10.3389/fsufs.2022.877476.
  36. Nesper M, Kueffer C, Krishnan S, Kushalappa CG, Ghazoul J. Shade tree diversity enhances coffee production and quality in agroforestry systems in the Western Ghats. Agriculture, Ecosystems & Environment 2017;247:172–181. http://dx.doi.org/10.1016/j.agee.2017.06.024.