Morphological Degradation of Sago Starch (Metroxylon sp.) Bioplastic of Palopo, South Sulawesi

##plugins.themes.academic_pro.article.main##

Pria Gautama
Budiawan Sulaeman
Nurhidayanti Nurhidayanti

Abstract

The growing concern over non-organic plastic waste has driven the development of bioplastics from renewable sources, such as sago starch (Metroxylon sp.), as an environmentally friendly alternative. This study aims to analyze the morphological structural changes of sago starch bioplastics exposed to UV radiation using Scanning Electron Microscopy (SEM). The bioplastics were prepared from sago starch, subjected to controlled UV irradiation, and subsequently examined with SEM to observe microstructural modifications. The results demonstrate that UV radiation significantly induces degradation and structural alterations, characterized by increased surface roughness, and changes in the fracture structure and cross-section of the bioplastic. SEM images show the progression of structural damage at various UV exposure times (24, 48, and 72 hours), illustrating the formation of cracks, micro-cavities, and increased porosity. These findings underscore the importance of understanding UV degradation for developing more environmentally resistant sago bioplastics.

##plugins.themes.academic_pro.article.details##

Author Biographies

Pria Gautama, Politeknik Negeri Ujung Pandang

Center for Material and Manufacturing, Department of Mechanical Engineering

Budiawan Sulaeman, Andi Djemma University

Faculty of Engineering, Mining Engineering

Nurhidayanti Nurhidayanti, Politeknik Negeri Ujung Pandang

Center for Material and Manufacturing, Department of Mechanical Engineering

How to Cite
1.
Gautama P, Sulaeman B, Nurhidayanti N. Morphological Degradation of Sago Starch (Metroxylon sp.) Bioplastic of Palopo, South Sulawesi. J. appl. agricultural sci. technol. [Internet]. 2025Nov.30 [cited 2025Dec.1];9(4):594-60. Available from: https://www.jaast.org/index.php/jaast/article/view/501

References

  1. Mangaraj S, Yadav A, Bal LM, Dash SK, Mahanti NK. Application of Biodegradable Polymers in Food Packaging Industry: A Comprehensive Review. J Packag Technol Res 2019;3:77–96. https://doi.org/10.1007/s41783-018-0049-y. https://link.springer.com/article/10.1007/S41783-018-0049-Y
  2. Geyer R, Jambeck JR, Law KL. Production, use, and fate of all plastics ever made. Science Advance 2017. https://www.science.org/doi/full/10.1126/sciadv.1700782
  3. Wróblewska-Krepsztul J, Rydzkowski T, Borowski G, Szczypiński M, Klepka T, Thakur VK. Recent progress in biodegradable polymers and nanocomposite-based packaging materials for sustainable environment. International Journal of Polymer Analysis and Characterization 2018;23:383–95. https://doi.org/10.1080/1023666X.2018.1455382. https://www.tandfonline.com/doi/abs/10.1080/1023666X.2018.1455382
  4. Stephen EC. Trends on Bio-Synthesis of Plastics. Advances in Biotechnology & Microbiology 2018;10. https://doi.org/10.19080/aibm.2018.10.555797. https://pdfs.semanticscholar.org/6ca2/c61e9f1b8b1924066b204087212d12a60271.pdf
  5. Kringel DH, Dias ARG, Zavareze ER, Gandra EA. Fruit Wastes as Promising Sources of Starch: Extraction, Properties, and Applications. Starch/Staerke 2019;72. https://doi.org/10.1002/star.201900200. https://onlinelibrary.wiley.com/doi/abs/10.1002/star.201900200
  6. Fatima S, Khan MR, Ahmad I, Sadiq MB. Recent advances in modified starch based biodegradable food packaging: A review. Heliyon 2024;10. https://doi.org/10.1016/j.heliyon.2024.e27453. https://www.cell.com/heliyon/fulltext/S2405-8440(24)03484-4
  7. Asriza RO, Azizah QN, Narulita A, Nurhadini. Analisis Sifat Mekanik dan Permukaan pada Degradasi Plastik Konvensional. Jurnal Riset Fisika Indonesia 2023;4:25–9. https://doi.org/10.33019/jrfi.v4i1.4645 https://journal.ubb.ac.id/index.php/jrfi/en/article/view/4645
  8. George N, Debroy A, Bhat S, Singh S, Bindal S. Biowaste to bioplastics: An ecofriendly approach for a sustainable future. Journal of Applied Biotechnology Reports 2021;8:221–33. https://doi.org/10.30491/jabr.2021.259403.1318. https://www.biotechrep.ir/article_138303.html
  9. Shaikh S, Yaqoob M, Aggarwal P. An overview of biodegradable packaging in food industry. Curr Res Food Sci 2021;4:503–20. https://doi.org/10.1016/j.crfs.2021.07.005.
  10. Muharam T, Fitriani D, Fataya D, Jannah M, Zidan M, Ghifari A, et al. Karakteristik Daya Serap Air dan Biodegradabilitas pada Bioplastik Berbasis Pati Singkong dengan Penambahan Polyvinyl Alcohol. Prosiding Seminar Nasional Aplikasi Sains & Teknologi (SNAST) 2022;12. http://dx.doi.org/10.34151/prosidingsnast.v8i1.4152
  11. Minakawa AFK, Faria-Tischer PCS, Mali S. Simple ultrasound method to obtain starch micro- and nanoparticles from cassava, corn and yam starches. Food Chem 2019;283:11–8. https://doi.org/10.1016/j.foodchem.2019.01.015. https://www.sciencedirect.com/science/article/abs/pii/S0308814619300536
  12. Tan SX, Andriyana A, Lim S, Ong HC, Pang YL, Ngoh GC. Rapid Ultrasound-Assisted Starch Extraction from Sago Pith Waste (SPW) for the Fabrication of Sustainable Bioplastic Film. Polymers (Basel) 2021;13. https://doi.org/10.3390/polym13244398. https://www.mdpi.com/2073-4360/13/24/4398
  13. Rami MR, Forouzandehdel S, Aalizadeh F. Enhancing biodegradable smart food packaging: Fungal-synthesized nanoparticles for stabilizing biopolymers. Heliyon 2024;10. https://doi.org/10.1016/j.heliyon.2024.e37692. https://www.cell.com/heliyon/fulltext/S2405-8440(24)13723-1
  14. da Silva AAPT, do O RF, Costa LC, dos Santos FA, Iulianelli GCV. Comparative Study of the Addition of TiO2 and TiO2/OMMT Clay on the Properties of PBAT for Biodegradable Food Packaging Applications. Materials Research 2025;28. https://doi.org/10.1590/1980-5373-MR-2024-0506. https://www.scielo.br/j/mr/a/FJgXYDwX6bpXDjFhRM3SXjQ/?format=html&lang=en
  15. Maryam, Kasim A, Novelina, Emriadi. Preparation and characterization of sago (metroxylon sp.) Starch nanoparticles using hydrolysis-precipitation method. J Phys Conf Ser, vol. 1481, Institute of Physics Publishing; 2020. https://doi.org/10.1088/1742-6596/1481/1/012021. https://iopscience.iop.org/article/10.1088/1742-6596/1481/1/012021/meta
  16. Rahadi B, Setiani P, Antonius R. Karakteristik Bioplastik Berbahan Dasar Limbah Cair Tahu (Whey) dengan Penambahan Kitosan dan Gliserol. Jurnal Sumberdaya Alam Dan Lingkungan 2020;7:81–9. https://doi.org/10.21776/ub.jsal.2020.007.02.5. https://jsal.ub.ac.id/index.php/jsal/article/view/347
  17. Muñoz-Gimena PF, Oliver-Cuenca V, Peponi L, López D. A Review on Reinforcements and Additives in Starch-Based Composites for Food Packaging. Polymers (Basel) 2023;15. https://doi.org/10.3390/polym15132972. https://www.mdpi.com/2073-4360/15/13/2972
  18. Quispe MM, López O V., Villar MA. Oxidative degradation of thermoplastic starch induced by UV radiation. J Renew Mater 2019;7:383–91. https://doi.org/10.32604/jrm.2019.04276. https://www.ingentaconnect.com/contentone/tsp/jrm/2019/00000007/00000004/art00008
  19. Sulaeman B, Salam N, Putra AEE, Arma LH. Development of Bioplastics from Tawaro’s Environmentally Friendly Sago Starch (Metroxylon). Eastern-European Journal of Enterprise Technologies 2023;5:6–16. https://doi.org/10.15587/1729-4061.2023.289626. https://openurl.ebsco.com/EPDB%3Agcd%3A5%3A20402885/detailv2?sid=ebsco%3Aplink%3Ascholar&id=ebsco%3Agcd%3A173421627&crl=c&link_origin=scholar.google.com
  20. Andrady AL, Heikkilä AM, Pandey KK, Bruckman LS, White CC, Zhu M, et al. Effects of UV radiation on natural and synthetic materials. Photochemical and Photobiological Sciences 2023;22:1177–202. https://doi.org/10.1007/s43630-023-00377-6. https://link.springer.com/article/10.1007/s43630-023-00377-6
  21. Zeyu W, Shi W, Valencak TG, Zhang Y, Liu G, Ren D. Biodegradation of conventional plastics: Candidate organisms and potential mechanisms. Science of The Total Environment 2023;885:163908. https://doi.org/10.1016/J.SCITOTENV.2023.163908.
  22. Peng Y, Wang Y, Zhang R, Wang W, Cao J. Improvement of wood against UV weathering and decay by using plant origin substances: Tannin acid and tung oil. Ind Crops Prod 2021;168. https://doi.org/10.1016/j.indcrop.2021.113606. https://www.sciencedirect.com/science/article/abs/pii/S0926669021003708
  23. Callister Jr DW, Rethwisch GD. Material Science and Engineering. John Wiley & Sons; 2020. https://url-shortener.me/5377 https://ftp.idu.ac.id/wp-content/uploads/ebook/tdg/TEKNOLOGI%20REKAYASA%20MATERIAL%20PERTAHANAN/Materials%20Science%20and%20Engineering%20An%20Introduction%20by%20William%20D.%20Callister,%20Jr.,%20David%20G.%20Rethwish%20(z-lib.org).pdf
  24. Young JR, Lovell AP. Introduction To Polymers. 3rd ed. CRC Press; 2011. https://doi.org/10.1201/9781439894156. https://www.taylorfrancis.com/books/mono/10.1201/9781439894156/introduction-polymers-robert-young-peter-lovell
  25. Khalil HPSA, Jummaat F, Yahya EB, Olaiya NG, Adnan AS, Abdat M, et al. A review on micro- to nanocellulose biopolymer scaffold forming for tissue engineering applications. Polymers (Basel) 2020;12. https://doi.org/10.3390/POLYM12092043. https://www.mdpi.com/2073-4360/12/9/2043
  26. Syarifa R, Esmaeili Y, Jafarzadeh S, Garavand F, Mahmud S, Ariffin F. An investigation of the morphological, thermal, mechanical, and barrier properties of an active packaging containing micro- and nano-sized ZnO particles. Food Sci Nutr 2023;11:7373–82. https://doi.org/10.1002/fsn3.3665. https://onlinelibrary.wiley.com/doi/full/10.1002/fsn3.3665
  27. Gamage A, Thiviya P, Mani S, Ponnusamy PG, Manamperi A, Evon P, et al. Environmental Properties and Applications of Biodegradable Starch-Based Nanocomposites. Polymers (Basel) 2022;14. https://doi.org/10.3390/polym14214578.
  28. Andrady AL, Pandey KK, Heikkilä AM. Interactive effects of solar UV radiation and climate change on material damage. Photochemical and Photobiological Sciences 2019;18:804–25. https://doi.org/10.1039/C8PP90065E. https://pubs.rsc.org/en/content/articlelanding/2019/pp/c8pp90065e/unauth
  29. Sait STL, Sørensen L, Kubowicz S, Vike-Jonas K, Gonzalez S V, Asimakopoulos AG, et al. Microplastic fibres from synthetic textiles: Environmental degradation and additive chemical content. Environmental Pollution 2021;268. https://doi.org/10.1016/j.envpol.2020.115745.
  30. Sulaeman B, Nurhidayanti N. Pemanfaatan Limbah Sagu (Metroxylon sp) sebagai Bahan Baku Biokomposite Ramah Lingkungan. Jurnal Teknik Mesin Sinergi 2025;23:8–14. https://doi.org/10.31963/sinergi.v23i1.5429. https://jurnal.poliupg.ac.id/index.php/Sinergi/article/view/5429
  31. Sulaeman B, Salam N, Putra AEE, Arma LH. Microstructural and Mechanical Properties of Sago Starch Bioplastics (Metroxylon sp) as Biodegradable Plastics. AIP Conf Proc 2024;3115. https://doi.org/10.1063/5.0207246/3313660. https://pubs.aip.org/aip/acp/article-abstract/3115/1/060015/3313660/Microstructural-and-mechanical-properties-of-sago