Relationship of Tree Architecture on Canopy Throughfall and Stem Flow in The Upstream of Batang Mahat River Basin Lima Puluh Kota Regency Indonesia


Reni Ekawaty
Yonariza Yonariza
Eri Gas Ekaputra
Ardinis Arbain
Rusnam Rusnam


A study about the effect of tree architecture on canopy throughfall and stem flow was conducted upstream of Batang Mahat River Basin, Lima Puluh Kota Regency, West Sumatra, Indonesia. Four dominant tree species in the location, Voacanga foetida, Guioa sp, Schima wallichii and Rhodoleia champonii, were selected and represented in architecture by Scarrone, Schoute, Rauh and Leeuwenberg, respectively. Furthermore, the sample was three trees of each species. The throughfall canopy was measured using a 1 x 1 m plastic plot placed at the edge, while the stem flow was calculated by two meters plastic tube with a five-litre tank at the bottom. These data were collected eight times over one month. The study aimed to the analyzed relationship between tree architecture and canopy throughfall and stem flow upstream of the Batang Mahat River Basin. The result showed that Schima wallichii differed significantly in throughfall canopy relative to the other three species. Additionally, V. foetida significantly differed in stem flow compared to the other tree species. There was no correlation between throughfall canopy, stem flow and precipitation, but the two parameters were affected by three architectures. These findings are useful for soil and water conservation in the upper Mahat River Basin.


Author Biographies

Reni Ekawaty, Politeknik Pertanian Negeri Payakumbuh

Study Program of Water Management of Agriculture, Department of Agricultural Engineering

Yonariza Yonariza, Universitas Andalas

Faculty of Agriculture

Eri Gas Ekaputra, Universitas Andalas

Faculty of Agricultural Engineering

Ardinis Arbain, Universitas Andalas

Graduate School

Rusnam Rusnam, Universitas Andalas

Faculty of Agricultural Engineering

How to Cite
Ekawaty, R., Yonariza, Y., Ekaputra, E. G. ., Arbain, A. ., & Rusnam, R. (2023). Relationship of Tree Architecture on Canopy Throughfall and Stem Flow in The Upstream of Batang Mahat River Basin Lima Puluh Kota Regency Indonesia. Journal of Applied Agricultural Science and Technology, 7(1), 45-52.


  1. Arrijani, A. (2006). Korelasi Model Arsitektur Pohon Dengan Laju Aliran Batang, Curahan Tajuk, Infiltrasi, Aliran Permukaan dan Erosi (Suatu Studi Tentang Peranan Vegetasi Dalam Konservasi Tanah dan Air Pada Sub DAS Cianjur Cisokan Citarum Tengah). Bogor: Sekolah Pascasarjana Institut Pertanian Bogor.
  2. Arrijani, A., & Lombok, B. J (2006). Model Arsitektur Pohon Pada Hulu DAS Cianjur Zona Sub-Montana Taman Nasional Gunung Gede Pangrango. Jurnal Matematika, Sains Dan Teknologi, 7(2), 71–84.
  3. Aththorick, T. A. (2000). Pengaruh Arsitektur Pohon Model Massart dan Rauh Terhadap Aliran Batang, Curahan Tajuk, Aliran Permukaan dan Erosi Di Hutan Pendidikan Gunung Walat Sukabumi. Bogor: Program Pasca Sarjana Institut Pertanian Bogor.
  4. Australian Native Plants Fact Sheet. (2014). Guioa or Wild Quince. In Maclean Landcare Group Inc. Maclean Landcare Group Insc.
  5. Ekawaty, R., Yonariza, Ekaputra, E. G., & Arbain, A. (2022). Structure and composition of tree community in the upstream area of Batang Mahat Watershed, Lima Puluh Kota District, West Sumatra, Indonesia. Biodiversitas, 23(2), 687–696.
  6. Faye, S. (2011). Correlation Between Tree Architecture Models, Soil and Water Conservation at Gunung Halimun-Salak National Park. Bogor: Graduate School Bogor Agricultural University.
  7. Ginebra-solanellas, R. M., Holder, C. D., Lauderbaugh, L. K., & Webb, R. (2020). The Influence of Changes in Leaf Inclination Angle and Leaf Traits During The Rainfall Interception Process. Agricultural and Forest Meteorology, 285–286(October 2019), 107924.
  8. Gonzalez-Ollauri, A., Stokes, A., & Mickovski, S. B. (2019). A novel Framework to Study the Effect of Tree Architectural Traits on Stemflow Yield and Its Consequences For Soil-Water Dynamics. Journal Pre Proofs, Journal of Hydrology.
  9. Halle, F., Oldeman, R. A. A., & Tomlinson, P. B. (1978). Tropical Trees and Forest. An Architectural Analysis.
  10. Herwitz, S. R. (1987). Raindrop Impact And Water Flow On The Vegetative Surface of Tree And The Effects On Stemflow And Throughfall Generation. Earth Surface Processes And Landforms, 12, 425–432.
  11. Herwitz, S. R., & Slye, R. E. (1995). Three-dimensional Modeling of Canopy Tree Interception of Wind-driven Rainfall. Journal of Hydrology, 168, 205–226.
  12. Naharuddin, N., Bratawinata, A., Hardwinarto, S., & Pitopang, R. (2016). Curahan Tajuk Pada Tegakan Model Arsitektur Pohon Aubreville, Leeuwenberg, dan Stone di Tipe Penggunaan Lahan Kebun Hutan Sub Daerah Aliran Sungai Sungai Gumbasa. Warta Rimba, 4(1), 28–33.
  13. Návar, J. (2019). Modeling Rainfall Interception Components of Forests : Extending Drip Equations. Agricultural and Forest Meteorology, 279(August).
  14. Nuraeni, E., Setiadi, D., & Widyatmoko, D. (2014). Kajian Arsitektur Pohon dalam Upaya Konservasi Air dan Tanah : Studi Kasus Altingia excelsa dan Schima wallichii di Taman Nasional G . Gede Pangrango ( Tree Architectural Assessment for the Purpose of Water and Soil Conservation : A Case Study of Altingia. Biologi Indonesia, 10(1), 17–26.
  15. Soedjoko, S. A., Suyono, & Suryatmojo, H. (2016). Hidrologi Hutan. Dasar-dasar, Analisis dan Aplikasi. Yogyakarta: Indonesia. Gadjah Mada University Press.
  16. Xiao, Q., Mcpherson, E. G., Ustin, S. L., & Grismer, M. E. (2000). A New Approach to Modeling Tree Rainfall Interception. Journal of Geophysical Research, 105(D23), 29.173-29.188.
  17. Yang, B., Lee, D. K., Heo, H. K., & Biging, G. (2019). The Effects of Tree Characteristics On Rainfall Interception In Urban Areas. Landscape and Ecological Engineering.