The Effect of Hydrolyzed Pectin as a Sugar Substitute on The Physicochemical Properties of Pineapple Spread

##plugins.themes.academic_pro.article.main##

Diana Lo
Michellina Michellina
Felicia Tedjakusuma
Cian-Song Huang

Abstract

Pineapple is a fruit that is widely produced in Indonesia. Pineapple can be processed into jam or fruit spread to extend its shelf life. However, jam contains high amount of sugar. High consumption of sugar in the diet can contribute to a high kilojoules diet or known as 'energy dense' and thus contribute to the development of health problems like obesity or diabetes. Sugar has important role in the jam. It binds water molecules to build spreadable product. Pectin can also bind water molecules and cannot be digested by human body but addition of pectin as sugar replacement cannot build spreadable product because pectin molecules is much longer than sucrose. Thus, depolymerization through hydrolysis is needed on pectin molecule. Therefore, the purpose of this research was to determine the effect of different hydrolyzed pectins as substitute for sucrose in a pineapple spread. The physicochemical properties of hydrolyzed pectin (viscosity and color value) and pineapple spreads made from the hydrolyzed pectin (color value, degree of brix, water activity, syneresis and spreadability) were investigated. The results showed that pectin treated with 0.05 M of HCl for 96 h produced the best pineapple spreads based on water activity and percentage of syneresis results. Moreover, pineapple spreads made from pectin treated with 0.05 M of HCl for 96 h has the most similar color and spreadability to the one with sucrose.

##plugins.themes.academic_pro.article.details##

Author Biographies

Diana Lo, Bina Nusantara University

Food Technology Department

Michellina Michellina, Aeres University of Applied Sciences

Food System Innovation

Felicia Tedjakusuma, Bina Nusantara University

Food Technology Department

Cian-Song Huang, National Pingtung University of Science and Technology

Department of Food Science
How to Cite
Lo, D., Michellina, M., Tedjakusuma, F., & Huang, C.-S. (2023). The Effect of Hydrolyzed Pectin as a Sugar Substitute on The Physicochemical Properties of Pineapple Spread. Journal of Applied Agricultural Science and Technology, 7(4), 337-345. https://doi.org/10.55043/jaast.v7i4.175

References

  1. Adetunji, L. R., Adekunle, A., Orsat, V., & Raghavan, V. (2017). Advances in the pectin production process using novel extraction techniques: A review. Food Hydrocolloids, 62, 239-250. https://doi.org/10.1016/j.foodhyd.2016.08.015.
  2. Belkacem, A., Ellouze, I., & Debbabi, H. (2021). Partial substitution of sucrose by non-nutritive sweeteners in sour orange marmalades: effects on quality characteristics and acute postprandial glycemic response in healthy volunteers. The North African Journal of Food and Nutrition Research, 5(11), 1-9. https://doi.org/10.51745/najfnr.5.11.1-9.
  3. Belović, M., Torbica, A., Pajić-Lijaković, I., & Mastilović, J. (2017). Development of low calorie jams with increased content of natural dietary fibre made from tomato pomace. Food Chemistry, 237, 1226-1233. https://doi.org/10.1016/j.foodchem.2017.06.045.
  4. Chauhan, O. P., Archana, B. S., Singh, A., Raju, P. S., & Bawa, A. S. (2013). Utilization of tender coconut pulp for jam making and its quality evaluation during storage. Food and Bioprocess Technology, 6, 1444-1449. https://doi.org/10.1007/s11947-012-0920-8.
  5. Chen, J., Liu, W., Liu, C. M., Li, T., Liang, R. H., & Luo, S. J. (2015). Pectin modifications: a review. Critical Reviews in Food Sscience and Nutrition, 55(12), 1684-1698. https://doi: 10.1080/10408398.2012.718722.
  6. Dereje, B., & Abera, S. (2020). Effect of pretreatments and drying methods on the quality of dried mango (Mangifera Indica L.) slices. Cogent Food & Agriculture, 6(1), 1747961. https://doi.org/10.1080/23311932.2020.1747961.
  7. Dipowaseso, D. A., Nurwantoro, N., & Hintono, A. H. (2018). Karakteristik fisik dan daya oles selai kolang-kaling yang dibuat melalui substitusi pektin dengan modified cassava flour (MOCAF) sebagai bahan pengental. Jurnal Teknologi Pangan, 2(1), 1-7. https://doi.org/10.14710/jtp.2018.20680.
  8. Dubey, A., Kumar, A., & Rao, P. S. (2021). Development and storage study of reduced calorie aloe vera (Aloe barbadensis Miller) based pineapple fruit jam. Journal of Food Measurement and Characterization, 15, 961-975. https://doi.org/10.1007/s11694-020-00689-6.
  9. Einhorn-Stoll, U., & Kunzek, H. (2009). The influence of the storage conditions heat and humidity on conformation, state transitions and degradation behaviour of dried pectins. Food Hydrocolloids, 23(3), 856-866. https://doi.org/10.1016/j.foodhyd.2008.05.001.
  10. Garna, H., Mabon, N., Nott, K., Wathelet, B., & Paquot, M. (2006). Kinetic of the hydrolysis of pectin galacturonic acid chains and quantification by ionic chromatography. Food Chemistry, 96(3), 477-484. https://doi.org/10.1016/j.foodchem.2005.03.002.
  11. Garna, H., Mabon, N., Wathelet, B., & Paquot, M. (2004). New method for a two-step hydrolysis and chromatographic analysis of pectin neutral sugar chains. Journal of Agricultural and Food Chemistry, 52(15), 4652-4659. https://doi.org/10.1021/jf049647j.
  12. Golon, A., & Kuhnert, N. (2012). Unraveling the chemical composition of caramel. Journal of Agricultural and Food Chemistry, 60(12), 3266-3274. https://doi.org/10.1021/jf204807z.
  13. Hadidi, M., Amoli, P. I., Jelyani, A. Z., Hasiri, Z., Rouhafza, A., Ibarz, A., Khaksar, F. B., & Tabrizi, S. T. (2020). Polysaccharides from pineapple core as a canning by-product: Extraction optimization, chemical structure, antioxidant and functional properties. International Journal of Biological Macromolecules, 163, 2357-2364. https://doi.org/10.1016/j.ijbiomac.2020.09.092.
  14. Hu, X., Shi, Y., Zhang, P., Miao, M., Zhang, T., & Jiang, B. (2016). D‐Mannose: Properties, production, and applications: An overview. Comprehensive Reviews in Food Science and Food Safety, 15(4), 773-785. https://doi.org/10.1111/1541-4337.12211.
  15. Lara-Espinoza, C., Carvajal-Millán, E., Balandrán-Quintana, R., López-Franco, Y., & Rascón-Chu, A. (2018). Pectin and pectin-based composite materials: Beyond food texture. Molecules, 23(4), 942. https://doi.org/10.3390/molecules23040942.
  16. Li, L., Huan, Y., & Shi, C. (2014). Effect of sorbitol on rheological, textural and microstructural characteristics of peanut butter. Food Science and Technology Research, 20(4), 739-747. https://doi.org/10.3136/fstr.20.739.
  17. Locatelli, G. O., Finkler, L., & Finkler, C. L. (2019). Comparison of acid and enzymatic hydrolysis of pectin, as inexpensive source to cell growth of Cupriavidus necator. Anais da Academia Brasileira de Ciências, 91. https://doi.org/10.1590/0001-3765201920180333.
  18. Meilgaard, M. C., Civille, G. V., & Carr, B. T. (2007). Sensory Evaluation Techniques. 4th ed CRC Press LLC. New York. https://doi.org/10.1201/b16452.
  19. Mizrahi, S. (2010). Syneresis in food gels and its implications for food quality. In. Skibsted, L. H., Risbo, J., & Andersen, M. L., (Eds). Chemical deterioration and physical instability of food and beverages (pp. 324-348). Woodhead Publishing. https://doi.org/10.1533/9781845699260.2.324.
  20. Mosier, N. S., Hall, P., Ladisch, C. M., & Ladisch, M. R. (1999). Reaction kinetics, molecular action, and mechanisms of cellulolytic proteins. In. Tsao, G. T., Brainard, A. P., Bungay, H. R., Cao, N. J., Cen, P., Chen, Z., Du, J., Foody, B., Gong, C. S., Hall, P., Ho, N. W. Y., Irwin, D. C., Iyer, P., Jeffries, T. W., Ladisch, C. M., Ladisch, M. R., Lee, Y. Y., Mosier, M. S., Muhlemann, H. M., Sedlak, M., Shi, N. -Q., Tsao, G. T., Tolan J.S., Torget, R. W., Wilsom, D. B., & Xia, L., (Eds). Recent progress in bioconversion of lignocellulosics. Springer Berlin, Heidelberg. https://doi.org/10.1007/3-540-49194-5_2.
  21. Peinado, I., Rosa, E., Heredia, A., & Andrés, A. (2012). Rheological characteristics of healthy sugar substituted spreadable strawberry product. Journal of Food Engineering, 113(3), 365-373. https://doi.org/10.1016/j.jfoodeng.2012.06.008.
  22. Quintas, M. A., Brandao, T. R., & Silva, C. L. (2007). Modelling colour changes during the caramelisation reaction. Journal of Food engineering, 83(4), 483-491. https://doi.org/10.1016/j.jfoodeng.2007.03.036.
  23. Sandhu, K. S., Singh, N., & Lim, S. T. (2007). A comparison of native and acid thinned normal and waxy corn starches: Physicochemical, thermal, morphological and pasting properties. LWT-Food Science and Technology, 40(9), 1527-1536. https://doi.org/10.1016/j.lwt.2006.12.012.
  24. Smith, S. D. (2014). Quantifying color variation: improved formulas for calculating hue with segment classification. Applications in Plant Sciences, 2(3), 1300088. https://doi.org/10.3732/apps.1300088.
  25. Tiwari, S., & Bhattacharya, S. (2011). Aeration of model gels: Rheological characteristics of gellan and agar gels. Journal of Ffood Eengineering, 107(1), 134-139. https://doi.org/10.1016/j.jfoodeng.2011.05.036.
  26. van der Sman, R. G. M. (2017). Predicting the solubility of mixtures of sugars and their replacers using the Flory–Huggins theory. Food & Function, 8(1), 360-371. https://doi.org/10.1039/C6FO01497F.
  27. Vilela, A., Matos, S., Abraão, A. S., Lemos, A. M., & Nunes, F. M. (2015). Sucrose replacement by sweeteners in strawberry, raspberry, and cherry Jams: Effect on the textural characteristics and sensorial profile—A chemometric Approach. Journal of Food Processing, 749740. https://doi.org/10.1155/2015/749740.