The Effect of Coffee Canopy Pruning and Fertilization on Coffee Growth and Soil Physical Properties

##plugins.themes.academic_pro.article.main##

Rosesita Tri Suci Rohani
Cahyo Prayogo
Didik Suprayogo
Kurniawan Sigit Wicaksono

Abstract

Arabica coffee is primarily cultivated in agroforestry systems in Indonesia, but limited local knowledge and technology adoption hinder its productivity due to insufficient practices in coffee pruning management. This study aims to analyze variations in coffee canopy pruning (Pruning+Bending) management and the impact on plant growth and soil physical characteristics.. The experiment employed a split-plot experimental design and utilized the Fisher test (5%) to assess the treatment effects. The primary plot focused on coffee canopy pruning using two management options: (1) Pruning (PR) and (2) Bending (BN). The subplots included various types and doses of fertilizer treatments: (1) Control (F0), (2) Chicken manure (F1), (3) Chicken manure+NPK fertilizer (F2), and (4) NPK fertilizer (F3). Each experimental plot covered an area of 20x20 m and contained 50 coffee plants. Bending techniques represent alternative pruning methods, and, in general, they have a significant impact on improving several coffee parameters compared to total pruning. Regarding the soil’s physical properties, the bending technique exhibited a higher infiltration rate than pruning. The management approach of Bending+Chicken manure: NPK fertilizer (BNF2) enhanced various coffee parameters, resulting in an increased stem diameter of 4.79 cm, new shoot length of 471.20 cm, and chlorophyll content of 6.83 mg/g. Furthermore, this treatment increased soil organic carbon content by 7.51% and reduced bulk density to 0.58 g/cm. In conclusion, the bending technique wasproven to be more advantageous than pruning, especially when combined with chicken manure and NPK fertilizer for enhancing coffee management among farmers.

##plugins.themes.academic_pro.article.details##

Author Biographies

Rosesita Tri Suci Rohani, Brawijaya University

Graduate program of Soil and Water Management

Cahyo Prayogo, Brawijaya University

Department of Soil Science, Faculty of Agriculture

Didik Suprayogo, Brawijaya University

Department of Soil Science, Faculty of Agriculture

Kurniawan Sigit Wicaksono, Brawijaya University

Department of Soil Science, Faculty of Agriculture

How to Cite
Rohani, R. T. S., Prayogo, C. ., Suprayogo, D. ., & Wicaksono, K. S. (2024). The Effect of Coffee Canopy Pruning and Fertilization on Coffee Growth and Soil Physical Properties. Journal of Applied Agricultural Science and Technology, 8(1), 29-49. https://doi.org/10.55043/jaast.v8i1.208

References

  1. Abdalla, K., Sun, Y., Zarebanadkouki, M., Gaiser, T., Seidel, S., & Pausch, J. (2022). Long-term continuous farmyard manure application increases soil carbon when combined with mineral fertilizers due to lower priming effects. Geoderma, 428, 116216. https://doi.org/10.1016/j.geoderma.2022.116216
  2. Aerts, R., Hundera, K., Berecha, G., Gijbels, P., Baeten, M., Van Mechelen, M., ..., & Honnay, O. (2011). Semi-forest coffee cultivation and the conservation of Ethiopian Afromontane rainforest fragments. Forest Ecology and Management, 261(6), 1034–1041. https://doi.org/10.1016/j.foreco.2010.12.025
  3. Alemu, M. M. (2015). Effect of Tree Shade on Coffee Crop Production. Journal of Sustainable Development, 8(9), 66. https://doi.org/10.5539/jsd.v8n9p66
  4. Amponsah, E. K., Aboagye, E., & Agyemang, O. S. (2013). Crop Technology Adoption Among Rural Farmers in Some Selected Regions of Mali. Journal of Sustainable Development, 6(10), 25-35. https://doi.org/10.5539/jsd.v6n10p25
  5. Anda, M., & Dahlgren, R. A. (2020). Long-term response of tropical Andisol properties to conversion from rainforest to agriculture. Catena, 194, 104679. https://doi.org/10.1016/j.catena.2020.104679
  6. Andivia, E., Vázquez-Piqué, J., Fernández, M., & Alejano, R. (2013). Litter production in Holm oak trees subjected to different pruning intensities in Mediterranean dehesas. Agroforestry Systems, 87(3), 657–666. https://doi.org/10.1007/s10457-012-9586-5
  7. Archer, N. A. L., Otten, W., Schmidt, S., Bengough, A. G., Shah, N., & Bonell, M. (2015). Rainfall infiltration and soil hydrological characteristics below ancient forest, planted forest and grassland in a temperate northern climate. Ecohydrology, 9(4), 585–600. https://doi.org/10.1002/eco.1658
  8. Azizah, F. R., Prayogo, C., Kurniawan, S., & Rowe, R. L. (2023). Microbial Biomass and Soil Respiration Response to Pruning and Fertilization Practices in Coffee-Pine Agroforestry. Journal of Ecological Engineering, 24(8), 329–342. https://doi.org/10.12911/22998993/167417
  9. Cahyono, E. D., Fairuzzana, S., Willianto, D., Pradesti, E., McNamara, N. P., Rowe, R. L., & van Noordwijk, M. (2020). Agroforestry innovation through planned farmer behavior: Trimming in pine–coffee systems. Land, 9(10), 1–20. https://doi.org/10.3390/land9100363
  10. Cahyono, E. D., Pradesti, E., Prayogo, C., Suhartini, & Isaskar, R. (2023). Exploring the Relative Advantages of Local Innovation in Agroforestry. Frontiers of Agricultural Science and Engineering, 10(1), 61–72. https://doi.org/10.15302/J-FASE-2022476
  11. Cardoso, E. J. B. N., Vasconcellos, R. L. F., Bini, D., Miyauchi, M. Y. H., dos Santos, C. A., Alves, P. R. L., ..., & Nogueira, M. A. (2013). Soil health: Looking for suitable indicators. What should be considered to assess the effects of use and management on soil health?. Scientia Agricola, 70(4), 274–289. https://doi.org/10.1590/S0103-90162013000400009
  12. Carducci, C. E., Oliveira, G. C., Curi, N., Heck, R. J., Rossoni, D. F., de Carvalho, T. S., & Costa, A. L. (2015). Gypsum effects on the spatial distribution of coffee roots and the pores system in oxidic Brazilian Latosol. Soil and Tillage Research, 145, 171–180. https://doi.org/10.1016/j.still.2014.09.015
  13. Cerda, R., Allinne, C., Gary, C., Tixier, P., Harvey, C. A., Krolczyk, L., ..., & Avelino, J. (2017). Effects of shade, altitude and management on multiple ecosystem services in coffee agroecosystems. European Journal of Agronomy, 82, 308–319. https://doi.org/10.1016/j.eja.2016.09.019
  14. Chemura, A. (2014). The growth response of coffee (Coffea arabica L) plants to organic manure, inorganic fertilizers and integrated soil fertility management under different irrigation water supply levels. International Journal of Recycling of Organic Waste in Agriculture, 3(59), 1–9. https://doi.org/10.1007/s40093-014-0059-x
  15. Desrochers, A., Maurin, V., & Tarroux, E. (2015). Production and role of epicormic shoots in pruned hybrid poplar: effects of clone, pruning season and intensity. Annals of Forest Science, 72(4), 425–434. https://doi.org/10.1007/s13595-014-0443-8
  16. Dufour, B. P., Kerana, I. W., & Ribeyre, F. (2019). Effect of coffee tree pruning on berry production and coffee berry borer infestation in the Toba Highlands (North Sumatra). Crop Protection, 122, 151–158. https://doi.org/10.1016/j.cropro.2019.05.003
  17. Dunbabin, V. M., Postma, J. A., Schnepf, A., Pagès, L., Javaux, M., Wu, L., ..., & Diggle, A. J. (2013). Modelling root-soil interactions using three-dimensional models of root growth, architecture and function. Plant and Soil, 372(1–2), 93–124. https://doi.org/10.1007/s11104-013-1769-y
  18. Fang, X., Wang, Q., Zhou, W., Zhao, W., Wei, Y., & Dai, L. (2014). Land use effects on soil organic carbon, microbial biomass and microbial activity in changbai mountains of northeast China. Chinese Geographical Science, 24(3), 297–306. https://doi.org/10.1007/s11769-014-0670-9
  19. Feng, Y. L., Cao, K. F., & Zhang, J. L. (2004). Photosynthetic characteristics, dark respiration, and leaf mass per unit area in seedlings of four tropical tree species grown under three irradiances. Photosynthetica, 42(3), 431–437. https://doi.org/10.1023/B:PHOT.0000046163.83729.e5
  20. Ferry, Y., & Rusli, R. (2020). Pengaruh Dosis Mikoriza Dan Pemupukan NPK Terhadap Pertumbuhan Dan Produksi Kopi Robusta Di Bawah Tegakan Kelapa Produktif. In Jurnal Penelitian Tanaman Industri, 20(1), 27. https://doi.org/10.21082/jlittri.v20n1.2014.27-34 https://www.neliti.com/publications/126976/pengaruh-dosis-mikoriza-dan-pemupukan-npk-terhadap-pertumbuhan-dan-produksi-kopi
  21. Fini, A., Frangi, P., Faoro, M., Piatti, R., Amoroso, G., & Ferrini, F. (2015). Effects of different pruning methods on an urban tree species: A four-year-experiment scaling down from the whole tree to the chloroplasts. Urban Forestry and Urban Greening, 14(3), 664–674. https://doi.org/10.1016/j.ufug.2015.06.011
  22. Franck, N., & Vaast, P. (2009). Limitation of coffee leaf photosynthesis by stomatal conductance and light availability under different shade levels. Trees - Structure and Function, 23(4), 761–769. https://doi.org/10.1007/s00468-009-0318-z
  23. Guhra, T., Wonneberger, A., Stolze, K., Ritschel, T., & Totsche, K. U. (2023). The functional role of earthworm mucus during aggregation. Journal of Plant Nutrition and Soil Science, 1-14. https://doi.org/10.1002/jpln.202300100
  24. Hairiah, K., van Noordwijk, M., Sari, R. R., Saputra, D. D., Widianto, Suprayogo, D., Kurniawan, S., Prayogo, C., & Gusli, S. (2020). Soil carbon stocks in Indonesian (agro) forest transitions: Compaction conceals lower carbon concentrations in standard accounting. Agriculture, Ecosystems and Environment, 294, 106879. https://doi.org/10.1016/j.agee.2020.106879
  25. Halpern, C. B., Halaj, J., Evans, S. A., & Dovčiak, M. (2012). Level and pattern of overstory retention interact to shape long-term responses of understories to timber harvest. Ecological Society of America, 22(8), 2049–2064. https://doi.org/10.1890/12-0299.1
  26. Horton, R. E. (1933). The role of infiltration in the hydrologic cycle. Eos, Transactions American Geophysical Union, 14(1), 446-460 http://dx.doi.org/10.1029/TR014i001p00446
  27. Ishaq, R. M., Saputra, D. D., Sari, R. R., Suprayogo, D., Widianto, Prayogo, C., & Hairiah, K. (2020). Turning volcanic ash into fertile soil: Farmers’ options in coffee agroforestry after the 2014 mount kelud eruption. Agrivita, 42(1), 78–91. https://doi.org/10.17503/agrivita.v42i1.2494
  28. Jezeer, R. E., Santos, M. J., Boot, R. G. A., Junginger, M., & Verweij, P. A. (2018). Effects of shade and input management on economic performance of small-scale Peruvian coffee systems. Agricultural Systems, 162, 179–190. https://doi.org/10.1016/j.agsy.2018.01.014
  29. Karim, A., Hifnalisa, H., & Manfarizah, M. (2021). Analysis of arabica coffee productivity due to shading, pruning, and coffee pulp-husk organic fertilizers treatments. Coffee Science, 16, 1-8. https://doi.org/10.25186/.v16i.1903
  30. Khayati, N., Wachjar, A., & Sudarsono. (2020). Pengelolaan Pemangkasan Tanaman Kopi Arabika (Coffea arabica L.) di Kebun Kalisat Jampit, PT Perkebunan Nusantara XII (Persero), Bondowoso, Jawa Timur. Buletin Agrohorti, 7(3), 295–301. https://doi.org/10.29244/agrob.v7i3.30531
  31. Khosa, S. A., Khan, K. S., Akmal, M., & Qureshi, K. M. (2020). Effect of combined application of organic and inorganic phosphatic fertilizers on dynamic of microbial biomass in semi-arid soil. Soil Science Annual, 71(1), 47–54. https://doi.org/10.37501/soilsa/121491
  32. Kurniawan, S., Hariyanto, P., & Ishaq, R. M. (2021). Soil management practices in coffee-based agroforestry systems within Universitas Brawijaya Forest impact on maintaining soil carbon stock. IOP Conference Series: Earth and Environmental Science, 824(1). https://doi.org/10.1088/1755-1315/824/1/012010
  33. Kurniawan, S., Utami, S. R., Mukharomah, M., Navarette, I. A., & Prasetya, B. (2019). Land use systems, soil texture, control carbon and nitrogen storages in the forest soil of UB forest, indonesia. Agrivita, 41(3), 416–427. https://doi.org/10.17503/agrivita.v41i3.2236
  34. Lian, J., Wang, H., Deng, Y., Xu, M., Liu, S., Zhou, B., Jangid, K., & Duan, Y. (2022). Impact of long-term application of manure and inorganic fertilizers on common soil bacteria in different soil types. Agriculture, Ecosystems & Environment, 337, 108044. https://doi.org/10.1016/J.AGEE.2022.108044
  35. Lin, W., Lin, M., Zhou, H., Wu, H., Li, Z., & Lin, W. (2019). The effects of chemical and organic fertilizer usage on rhizosphere soil in tea orchards. PLoS ONE, 14(5), 1–16. https://doi.org/10.1371/journal.pone.0217018
  36. Lopes, V. S., Cardoso, I. M., Fernandes, O. R., Rocha, G. C., Simas, F. N. B., de Melo Moura, W., ..., & da Luz, J. M. R. (2020). The establishment of a secondary forest in a degraded pasture to improve hydraulic properties of the soil. Soil and Tillage Research, 198, 104538. https://doi.org/10.1016/j.still.2019.104538
  37. Lihui, M., Xing, W., Zhiyong, G., Youke, W., Zhenyi, N., & Xiaoli, L. (2019). Canopy pruning as a strategy for saving water in a dry land jujube plantation in a loess hilly region of China. Agricultural Water Management, 216, 436–443. https://doi.org/10.1016/j.agwat.2018.12.007
  38. Maghfoer, M. D., Soelistyono, R., & Herlina, N. (2014). Growth and yield of eggplant (Solanum melongena L.) on various combinations of n-source and number of main branch. Agrivita, 36(3), 285–294. https://doi.org/10.17503/Agrivita-2014-36-3-285-294
  39. Muñoz-Villers, L. E., Geris, J., Alvarado-Barrientos, M. S., Holwerda, F., & Dawson, T. (2020). Coffee and shade trees show complementary use of soil water in a traditional agroforestry ecosystem. Hydrology and Earth System Sciences, 24(4), 1649–1668. https://doi.org/10.5194/hess-24-1649-2020
  40. Musa, Y., Bahrun, A. H., & Rini, A. (2020). Farmers understanding and practices on shading and pruning for Arabica coffee - A survey and analysis on the effects to the yields. IOP Conference Series: Earth and Environmental Science, 575(1). https://doi.org/10.1088/1755-1315/575/1/012158
  41. Nguyen, V. H., & Yen, C. R. (2018). Rootstock age and grafting season affect graft success and plant growth of papaya (Carica papaya L.) in greenhouse. Chilean Journal of Agricultural Research, 78(1), 59-67. http://doi.org/10.4067/S0718-58392018000100059
  42. Olaya, J. F. C., Salcedo, J. R., & Ordoñez, M. C. (2019). Impact of nutritional management on available mineral nitrogen and soil quality properties in coffee agroecosystems. Agriculture (Switzerland), 9(12), 260. https://doi.org/10.3390/agriculture9120260
  43. Prakasa, R. M. A., Manfarizah, & Basri, H. (2021). Kajian Laju Infiltrasi pada Berbagai Penggunaan Lahan dan Jenis Tanah di Kecamatan Blang Jeurango. Jurnal Ilmiah Mahasiswa Pertanian, 6(3), 254–262. https://doi.org/10.17969/jimfp.v6i3.17655
  44. Prayogo, C., Sholehuddin, N., Putra, E. Z. H. S., & Rachmawati, R. (2019). Soil macrofauna diversity and structure under different management of pine-coffee agroforestry system. Journal of Degraded and Mining Lands Management, 6(3), 1727–1736. https://doi.org/10.15243/jdmlm.2019.063.1727
  45. Putri, O. H., Utami, S. R., & Kurniawan, S. (2019). Sifat Kimia Tanah pada Berbagai Penggunaan Lahan di UB Forest. Jurnal Tanah Dan Sumberdaya Lahan, 06(01), 1075–1081. https://doi.org/10.21776/ub.jtsl.2019.006.1.6
  46. Reswari, A. A., & Prijono, S. (2021). Laju Infiltrasi Pada Berbagai Naungan Di Kebun Kopi Rakyat Sumbermanjing Wetan. Jurnal Tanah Dan Sumberdaya Lahan, 8(1), 293–300. https://doi.org/10.21776/ub.jtsl.2021.008.1.32
  47. Rowe, R. L., Prayogo, C., Oakley, S., Hairiah, K., van Noordwijk, M., Wicaksono, K. P., ..., & McNamara, N. P. (2022). Improved Coffee Management by Farmers in State Forest Plantations in Indonesia: An Experimental Platform. Land, 11(5), 671. https://doi.org/10.3390/land11050671
  48. Salamanca-Jimenez, A., Doane, T. A., & Horwath, W. R. (2016). Performance of Coffee Seedlings as Affected by Soil Moisture and Nitrogen Application. In Advances in Agronomy, 136, 221-244. Elsevier Inc. https://doi.org/10.1016/bs.agron.2015.11.006
  49. Sauvadet, M., den Meersche, K. V., Allinne, C., Gay, F., Filho, E. M. V., Chauvat, M., ..., & Harmand, J. M. (2019). Shade trees have higher impact on soil nutrient availability and food web in organic than conventional coffee agroforestry. Science of the Total Environment, 649, 1065–1074. https://doi.org/10.1016/j.scitotenv.2018.08.291
  50. Schmidt, R., Silva, L. O. E., Ferreira, A., Gontijo, I., Guimarães, R. J., Ramalho, J. C., & Partelli, F. L. (2022). Variability of Root System Size and Distribution among Coffea canephora Genotypes. Agronomy, 12(3), 647. https://doi.org/10.3390/agronomy12030647
  51. Sianturi, V. F., & Wachjar, A. (2016). Pengelolaan Pemangkasan Tanaman Kopi Arabika (Coffea arabica L.) di Kebun Blawan, Bondowoso, Jawa Timur. Buletin Agrohorti, 4(3), 266–275. https://doi.org/10.29244/agrob.v4i3.14242
  52. Singh, N. R., Kumar, D., Handa, A. K., Newaj, R., Prasad, M., Kamini, ..., & Singh, L. N. (2022). Land Use Effect on Soil Organic Carbon Stocks, Microbial Biomass and Basal Respiration in Bundelkhand Region of Central India. Agricultural Research, 11(3), 454–464. https://doi.org/10.1007/s40003-021-00584-6
  53. Smucker, A. J. M., Ferguson, J. C., DeBruyn, W. P., Belford, R. K., & Ritchie, J. T. (1987). Image analysis of video-recorded plant root systems. In Taylor, H. M., (Ed). Minirhizotron Observation Tubes: Methods and Applications for Measuring Rhizosphere Dynamics (pp. 67–80). Madison, WI: American Society of Agronomy https://doi.org/10.2134/asaspecpub50.c6
  54. Suchocka, M., Swoczyna, T., Kosno-Jonczy, J., & Kalaji, H. M. (2021). Impact of heavy pruning on development and photosynthesis of Tilia cordata Mill. trees. PLoS ONE, 16(8), 1–22. https://doi.org/10.1371/journal.pone.0256465
  55. Suprayogo, D., Prayogo, C., Saputra, D. D., Sari, R. R., Nugraha, A., Hadiwijoyo, E., Andhika, Y., Ishaq, R. M., Purnamasari, E., & Irawan, D. B. (2019). The capacity of community on running soil and water conservation in Bangsri micro-catchment, Upper Brantas Watershed, Indonesia. IOP Conference Series: Earth and Environmental Science, 393(1), 0–18. https://doi.org/10.1088/1755-1315/393/1/012054
  56. Surya, J. A., Nuraini, Y., & Widianto. (2017). Kajian Porositas Tanah Pada Pemberian Beberapa Jenis Bahan Organik Di Perkebunan Kopi Robusta. Jurnal Tanah Dan Sumberdaya Lahan, 4(1), 463–471. https://jtsl.ub.ac.id/index.php/jtsl/article/view/160
  57. Tang, B., Jiao, J., Yan, F., & Li, H. (2019). Variations in soil infiltration capacity after vegetation restoration in the hilly and gully regions of the Loess Plateau, China. Journal of Soils and Sediments, 19(3), 1456–1466. https://doi.org/10.1007/s11368-018-2121-1
  58. Tennant, D. (1975). A test of modified line intersect method of estimating root length. Journal of Ecology, 63(3), 995-1001. https://doi.org/10.2307/2258617
  59. van Kanten, R., Schroth, G., Beer, J., & Jiménez, F. (2005). Fine-root dynamics of coffee in association with two shade trees in Costa Rica. Agroforestry Systems, 63(3), 247–261. https://doi.org/10.1007/s10457-005-4163-9
  60. Waktola, T. U., & Fekadu, K. (2021). Adoption of Coffee Shade Agroforestry Technology and Shade Tree Management in Gobu Seyo District, East Wollega, Oromia. Advances in Agriculture, 2021, 1-13. https://doi.org/10.1155/2021/8574214
  61. Walkley, A., & Black, I. A. (1934). An examination of Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29-38. http://dx.doi.org/10.1097/00010694-193401000-00003
  62. Wang, S., Chen, H. Y. H., Tan, Y., Fan, H., & Ruan, H. (2016). Fertilizer regime impacts on abundance and diversity of soil fauna across a poplar plantation chronosequence in coastal Eastern China. Scientific Reports, 6, 1–10. https://doi.org/10.1038/srep20816
  63. Yusuf, M., Fernandes, A. A. R., Kurniawan, S., & Arisoesilaningsih, E. (2020). Initial soil properties of the restored degraded area under different vegetation cover in UB Forest, East Java, Indonesia. Journal of Physics: Conference Series, 1563(1). https://doi.org/10.1088/1742-6596/1563/1/012006
  64. Zhou, J., Zhang, Z., Xin, Y., Chen, G., Wu, Q., Liang, X., & Zhai, Y. (2022). Effects of Planting Density on Root Spatial and Temporal Distribution and Yield of Winter Wheat. Agronomy, 12(12), 3014. https://doi.org/10.3390/agronomy12123014
  65. Zhu, Q., Peng, X., Huang, T., Xie, Z., & Holden, N. M. (2014). Effect of biochar addition on maize growth and nitrogen use efficiency in Acid Red Soil. Pedospere, 24(6), 699-708. https://doi.org/10.1016/S1002-0160(14)60057-6