Prediction of Streamflow of the Anai-Weir Catchment Using Both the SWAT and Mock Models

##plugins.themes.academic_pro.article.main##

Mas Mera
Siti Hawa Binti Yusmardi
Junaidi Junaidi

Abstract

This research focuses on predicting the streamflow of the Anai-weir catchment using the SWAT (Soil and Water Assessment Tools) and Mock models. The catchment studied is approximately 34,024 ha wide. The rainfall and climatological data were collected from the three nearest rainfall stations, namely Kandang IV (13.8 km far), Kasang (15.2 km far), and Sicincin Stations (11.2 km far), from 2010 to 2019. The first research methodology is to delineate the catchment, form a Hydrologic Response Unit (HRU), and then enter the climatological data into the SWAT model to estimate the daily streamflow. This daily streamflow is then averaged over a semi-monthly period. The second research methodology is to estimate an evapotranspiration depth based on the climatological data using the Modified Penman method, and then predict the semi-monthly average-daily streamflow using the Mock model. The results obtained from both methods are then compared with the Anai-weir AWLR-data. The average results from each method, namely, the SWAT model, the Mock model, and the AWLR data have the same tendency, but the Mock model results are closer than the SWAT model results to the AWLR data. This indicates that the Mock model is more suitable than the SWAT model for the existing data conditions. Even though the SWAT model considers more variables than the Mock model does.

##plugins.themes.academic_pro.article.details##

Author Biographies

Mas Mera, University of Andalas

Civil Engineering Department

Siti Hawa Binti Yusmardi, University of Andalas

Civil Engineering Department

Junaidi Junaidi, University of Andalas

Civil Engineering Department

How to Cite
Mera, M., Yusmardi, S. H. B. ., & Junaidi, J. (2023). Prediction of Streamflow of the Anai-Weir Catchment Using Both the SWAT and Mock Models. Journal of Applied Agricultural Science and Technology, 7(2), 64-72. https://doi.org/10.55043/jaast.v7i2.96

References

  1. Abbas, A., Amirabadizadeh, M., Afshar, A. A., & Yaghoobzadeh, M. (2022). Potential Influence of Climate and Land-use Changes on Green Water Security in a Semi-arid Catchment. Journal of Water Climate Change, 13(1), 287-303. https://doi.org/10.2166/wcc.2021.055
  2. Ayivi, F., & Jha, M. K. (2018). Estimation of Water Balance and Water Yield in the Reedy Fork-Buffalo Cree Watershed in North Carolina using SWAT. International Soil and Water Conservation Research, 6, 203-213. https://doi.org/10.1016/j.iswcr.2018.03.007
  3. Felix, M. L., & Jung, K. (2022). Impacts of Spatial Interpolation Methods on Daily Streamflow Predictions with SWAT. Water, 14(20), 3340. https://doi.org/10.3390/w14203340
  4. Gassman, P. W., Jeong, J., Boulange, J., Narasimhan, B., Kato, T., Somura, H., Watanabe, H., Eguchi, S., Cui, Y., Sakaguchi, A., Tu, L. H., Jiang, R., Kim, M-K., Arnold, J. G., & Quyang, W. (2022). Simulation of rice paddy systems in SWAT: A review of previous applications and proposed SWAT+ rice paddy module. International Journal of Agricultural and Biological Engineering, 15(1), 1-24 https://www.ijabe.org/index.php/ijabe/article/view/7147
  5. Getahun, E., & Keefer, L. L. (2022). Assessing the Effectiveness of Winter Cover Crops for Controlling Agricultural Nutrient Losses. Journal of the American Water Resources Association, JAWR-20-0173-P https://doi.org/10.1111/1752-1688.13058
  6. Guug, S. S., Abdul-Ganiyu, S., & Kasei, R. A. (2020). Application of SWAT Hydrological Model for Assessing Water Availability at the Sherigu Catchment of Ghana and Southern Burkina Faso. HydroResearch, 3, 124-133. https://doi.org/10.1016/j.hydres.2020.10.002
  7. Juma, L. A., Nkongolo, N. V., Raude, J. M., & Kiai, C. (2022). Assessment of hydrological water balance in Lower Nzoia Sub-catchment using SWAT-model: towards improved water governance in Kenya. Heliyon, 8(7), e09799. https://doi.org/10.1016/j.heliyon.2022.e09799
  8. KPU (2011). Prosedur dan instruksi kerja perhitungan debit andalan. Jakarta: Dirjen Sumber Daya Air, Kementerian Pekerjaan Umum.
  9. KPU (2013). Standar perencanaan irigasi: Kriteria perencanaan bagian perencanaan jaringan irigasi KP-01. Jakarta: Direktorat Irigasi dan Rawa, Dirjen Sumber Daya Air, Kementerian Pekerjaan Umum.
  10. Lamane, H., Moussadek, R., Baghdad, B., Mouhir, L., Briak, H., Laghlimi, M., & Zouahri, A. (2022). Soil Water Erosion Assessment in Morocco Through Modeling and Fingerprinting Applications: A Review. Heliyon, 8(8), e10209. https://doi.org/10.1016/j.heliyon.2022.e10209
  11. Liyantono, F. (2014). Pendugaan Debit Andalan Menggunakan Model SWAT di Sungai Kuncir, Kabupaten Nganjuk, Jawa Timur. [Undergraduate Thesis]: Bogor: Institut Pertanian Bogor. https://repository.ipb.ac.id/handle/123456789/71887
  12. Mengistu, T. D., Chung, I-M., Kim, M-G., Chang, S. W., & Lee, J. E. (2022). Impacts and Implications of Land Use Land Cover Dynamics on Groundwater Recharge and Surface Runoff in East African Watershed. Water, 14(13), 2068. https://doi.org/10.3390/w14132068
  13. Nkwasa, A., Chawanda, C. J., & Griensven, A. V. (2022). Regionalization of the SWAT+ Model for Projecting Climate Change Impacts on Sediment Yield: An Application in the Nile Basin. Journal of Hydrology: Regional Studies, 42, 101152. https://doi.org/10.1016/j.ejrh.2022.101152
  14. Ntona, M. M., Busico, G., Mastrocicco, M., & Kazakis, N. (2022). Modeling Groundwater and Surface water Interaction: An Overview of Current Status and Future Challenges. Science of The Total Environment, 846, 157355. https://doi.org/10.1016/j.scitotenv.2022.157355
  15. Priyanto. (2016). Pendugaan Debit Puncak Menggunakan Model SWAT di Sub DAS Cikadu, Bandung. [Undergraduate Thesis]: Bogor: Institut Pertanian Bogor. https://repository.ipb.ac.id/handle/123456789/83699
  16. Raij-Hoffman, I., Miller, K., Paul, J., Yimam, Y., Mehan, S., Dickey, J., Harter, T., & Kisekka, I. (2022). Modeling Water and Nitrogen Dynamics from Processing Tomatoes Under Different management Scenarios in the San Joaquin Valley of California. Journal of Hydrology: Regional Studies, 43, 101195. https://doi.org/10.1016/j.ejrh.2022.101195
  17. Rigby, A. M. F., Butcher, P. W. S., Ritsos, P. D., & Patil, S. D. (2022). LUCST A Novel Toolkit for Land Use Land Cover Change Assessment in SWAT+ to Support Flood Management Decisions. Environmental Modelling & Software, 156, 105469. https://doi.org/10.1016/j.envsoft.2022.105469
  18. Sakti, N. A., & Suprayogi, S. (2016). Aplikasi Model Soil Water Assesment Tool (SWAT) Untuk Mengkaji Debit Harian Dan Limpasan Permukaan (Kasus:Sub-DAS Wakung, Pemalang, Jawa Tengah). Jurnal Bumi Indonesia, 5(1), 1-9. https://www.neliti.com/publications/223091/aplikasi-model-soil-and-water-assesment-tool-swat-untuk-mengkaji-debit-harian-da
  19. Singh, L., & Saravanan, S. (2020). Simulation of Monthly Streamflow Using the SWAT Model of the Ib River Watershed, India. Hydro Research, 3, 95-105. https://doi.org/10.1016/j.hydres.2020.09.001
  20. Singh, L., & Saravanan, S. (2022). Evaluation of Blue and Green Water Using Combine Stream Flow and Soil Moisture Simulation in Wunna Watershed, India. Water Conservation Science and Engineering, 7, 211-225. https://doi.org/10.1007/s41101-022-00138-z
  21. Soemarto. (1999). Hidrologi teknik (2nd ed.). Jakarta: Erlangga
  22. Srinivas, R., Das, B., & Singhal, A. (2022). Integrated Watershed Modeling Using Interval Valued Fuzzy Computations to Enhance Watershed Restoration and Protection at Field-scale. Stochastic Environmental Research and Risk Assessment, 36, 1429-1445. https://doi.org/10.1007/s00477-021-02151-5
  23. Sudinda, T. W. (2019). Penentuan Debit Andalan dengan Metode FJ Mock di Daerah Aliran Sungai Cisadane. Jurnal Air Indonesia, 11(1), 15-24. https://doi.org/10.29122/jai.v11i1.3933
  24. SWAT (2022, Oct 31). Soil and water assessment tool. Retrieved from https://swat.tamu.edu/.
  25. Vagheei, H., Laini, A., Vezza, P., palau-Salvador, G., & Boano, F. (2022). Ecohydrologic Modeling Using Nitrate, Ammonium, Phosphorus, and Macroinvertebrates as Aquatic Ecosystem Health Indicators for Albaida Valley (Spain). Journal of Hydrology: Regional Studies, 42, 101155. https://doi.org/10.1016/j.ejrh.2022.101155
  26. Wang, Y., Zhou, Y., Franz, K. J., Zhang, X., Qi, J., Jia, G., & Yang, Y. (2022). IrrigationPlays Significantly Different Roles in Influencing Hydrological Processes in two Breadbasket Regions. Science of The Total Environment, 844, 157253. https://doi.org/10.1016/j.scitotenv.2022.157253