The Use of Aquacrop Model for Soybean in Various Water Availability Within a Lysimeter System
##plugins.themes.academic_pro.article.main##
Abstract
The AquaCrop model is widely used under various agro-ecological conditions to reduce farm water consumption. The study aimed to simulate, validate, and measure the performance of AquaCrop models for canopy cover, biomass and soybean crop yields cultivated within a lysimeter. This research was conducted in the experimental field of the Faculty of Agriculture, the University of Jember, Indonesia (8°09'45.1" S, 113°42'58.2" E, 101 m a.s.l). There are four treatments in 4 lysimeters, namely P1 (irrigation based on recommendation), P2 (irrigation 95-105% FC), P3 (irrigation 75-85% FC) and P4 (irrigation 55-65% FC). The AquaCrop model is calibrated using canopy cover (CC) and then validated to predict the biomass and soybean yield. The experiment revealed that the model simulates better CC, biomass, and soybean yields with full irrigation than deficit irrigation. The performance of the AquaCrop model for soybeans of the Deja 2 variety in predicting CC, biomass, and soybean yield is impressive and reasonable. For the CC we found R2 ranges from 0.956 to 0.995, RMSE 10.389% to 3,293%, NRMSE 0.154% to 0.051%, NSE 0.918 to 0.992, and d 0.980 to 0.998. For biomass the R2 is 0.842, RMSE 0.111 t ha-1, NRMSE 0.017%, NSE 0.712, and d 0.937. For soybeans production the R2 is 0.999, RMSE 0.045 t.ha-1, NRMSE 0.018%,, NSE 0.908 and d 0.970. This study demonstrated that based on WUE, 55-65% FC irrigation is the most efficient application.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Abayechaw, D. (2021). Review on Decision Support System for Agrotechnology Transfer (DSSAT) Model. International Journal of Intelligent Information Systems, 10(6), 117–124. https://doi.org/10.11648/j.ijiis.20211006.13
- Adeboye, O. B., Schultz, B., Adeboye, A. P., Adekalu, K. O., & Osunbitan, J. A. (2021). Application of the AquaCrop model in decision support for optimization of nitrogen fertilizer and water productivity of soybeans. Information Processing in Agriculture, 8(3), 419–436. https://doi.org/10.1016/j.inpa.2020.10.002
- Adeboye, O. B., Schultz, B., Adekalu, K. O., & Prasad, K. (2017). Modelling of Response of the Growth and Yield of Soybean to Full and Deficit Irrigation by Using AquaCrop. Irrigation and Drainage, 66(2), 192–205. https://doi.org/10.1002/ird.2073
- Adeboye, O. B., Schultz, B., Adekalu, K. O., & Prasad, K. C. (2019). Performance evaluation of AquaCrop in simulating soil water storage, yield, and water productivity of rainfed soybeans (Glycine max L. merr) in Ile-Ife, Nigeria. Agricultural Water Management, 213, 1130–1146. https://doi.org/10.1016/j.agwat.2018.11.006
- Ali, M. H. (2010). Fundamentals of Irrigation and On-farm Water Management: Volume 1. Springer-Verlag. https://doi.org/10.1007/978-1-4419-6335-2
- Araya, A., Habtu, S., Hadgu, K. M., Kebede, A., & Dejene, T. (2010). Test of AquaCrop model in simulating biomass and yield of water deficient and irrigated barley (Hordeum vulgare). Agricultural Water Management, 97(11), 1838–1846. https://doi.org/10.1016/j.agwat.2010.06.021
- Badan Pusat Statistik. (2022). Produksi Kedelai Menurut Provinsi (ton). Retrieved from https://www.bps.go.id/linkTableDinamis/view/id/871
- Baghel, L., Kataria, S., & Guruprasad, K. N. (2018). Effect of static magnetic field pretreatment on growth, photosynthetic performance and yield of soybean under water stress. Photosynthetica, 56(2), 718–730. https://doi.org/10.1007/s11099-017-0722-3
- Budiastuti, M. T. S., Purnomo, D., Supriyono, Pujiasmanto, B., & Setyaningrum, D. (2020). Effects of light intensity and co-inoculation of arbuscular mycorrhizal fungi and rhizobium on root growth and nodulation of Indigofera tinctoria. SAINS TANAH - Journal of Soil Science and Agroclimatology, 17(2), 94–99. https://doi.org/10.20961/STJSSA.V17I2.40065
- Canon Inc. (2015). Specifications (EOS M3). Retrieved from https://id.canon/id/support/6200266100
- Ferreira, T., & Rasband, W. (2012). ImageJ User Guide. IJ 1.46r. Retrieved from https://imagej.nih.gov/ij/docs/guide/
- Fu, Q., Yang, L., Li, H., Li, T., Liu, D., Ji, Y., Li, M., & Zhang, Y. (2019). Study on the optimization of dry land irrigation schedule in the downstream Songhua River Basin based on the SWAT model. Water (Switzerland), 11(6), 1–19. https://doi.org/10.3390/w11061147
- Geerts, S., Raes, D., & Garcia, M. (2010). Using AquaCrop to derive deficit irrigation schedules. Agricultural Water Management, 98(1), 213–216. https://doi.org/10.1016/j.agwat.2010.07.003
- Hanson, J. D., Rojas, K. W., & Shaffer, M. J. (1999). Calibrating the root zone water quality model. Agronomy Journal, 91(2), 171–177. https://doi.org/10.2134/agronj1999.00021962009100020002x
- Hsiao, T. C., Heng, L., Steduto, P., Rojas-Lara, B., Raes, D., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: III. Parameterization and testing for maize. Agronomy Journal, 101(3), 448–459. https://doi.org/10.2134/agronj2008.0218s
- Indonesian Agency for Agricultural Research and Development. (2017). Kedelai varietas Deja 2. Retrieved from https://www.litbang.pertanian.go.id/varietas/1234/
- Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337–350. https://doi.org/10.1016/0378-4290(91)90040-3
- Jaybhay, S., Varghese, P., Taware, S. P., & Idhol, B. (2019). Response of soybean [Glycine max ( L .) Merrill] to irrigation at different growth stages. Agricultural Science Digest, 39(2), 132–135. https://doi.org/10.18805/ag.D-4932
- Kementerian Pertanian. (2020). Outlook Komoditas Pertanian Tanaman Pangan Kedelai. In Portal Epublikasi Pertanian Kementerian Pertanian Republik Indonesia. Pusat Data dan Sistem Informasi Pertanian Sekretariat Jenderal Kementerian Pertanian. Retrieved from http://epublikasi.pertanian.go.id/arsip-outlook/81-outlook-tanaman-pangan/741-outlook-kedelai-2020
- Kidron, G. J., & Kronenfeld, R. (2017). Assessing the effect of micro-lysimeters on NRWI : Do micro-lysimeters adequately represent the water input of natural soil ? Journal of Hydrology, 548, 382–390. https://doi.org/10.1016/j.jhydrol.2017.03.005
- Kidron, G. J., & Kronenfeld, R. (2020). Catena Microlysimeters overestimate the amount of non-rainfall water – an experimental approach. Catena, 194(104691), 1–9. https://doi.org/10.1016/j.catena.2020.104691
- Krause, P., Boyle, D. P., & Bäse, F. (2005). Comparison of different efficiency criteria for hydrological model assessment. Advances in Geosciences, 5, 89–97. https://doi.org/10.5194/adgeo-5-89-2005
- Lovelli, S., Perniola, M., Ferrara, A., & Di Tommaso, T. (2007). Yield response factor to water (Ky) and water use efficiency of Carthamus tinctorius L. and Solanum melongena L. Agricultural Water Management, 92(1–2), 73–80. https://doi.org/10.1016/j.agwat.2007.05.005
- Lubis, P. A., Tyasmoro, S. Y., & Sudiarso. (2017). Pengaruh jenis dan ketebalan mulsa dalam mempertahankan kandungan air tanah dan dampaknya terhadap tanaman kedelai (Glycine max (L.)) di lahan kering. Jurnal Produksi Tanaman, 5(5), 791–798. http://protan.studentjournal.ub.ac.id/index.php/protan/article/view/444
- Ma, L., Ahuja, L. R., Saseendran, S. A., Malone, R. W., Green, T. R., Nolan, B. T., Bartling, P. N. S., Flerchinger, G. N., Boote, K. J., & Hoogenboom, G. (2011). A protocol for parameterization and calibration of RZWQM2 in field research. In Ahuja, L. R., & Ma, L. (Eds.), Methods of Introducing System Models into Agricultural Research (pp. 1–64). American Society of Agronomy, Inc. Crop Science Society of America, Inc. Soil Science Society of America, Inc. https://doi.org/10.2134/advagricsystmodel2.c1
- Mibulo, T., & Kiggundu, N. (2018). Evaluation of FAO AquaCrop Model for Simulating Rainfed Maize Growth and Yields in Uganda. Agronomy, 8(11), 1–10. https://doi.org/10.3390/agronomy8110238
- Mohammad, S., Tiwari, H. L., & Balvanshi, A. (2018). Evaluation of yield of soybean crop using AquaCrop model for Ujjain District. International Journal of Recent Scientific Research, 9(5), 26968–26972. https://recentscientific.com/evaluation-yield-soybean-crop-using-aquacrop-model-ujjain-district
- Molle, B. A., & Larasati, A. F. (2020). Analisis Anomali Pola Curah Hujan Bulanan Tahun 2019 terhadap Normal Curah Hujan (30 Tahun) di Kota Manado dan sekitarnya. Jurnal Meteorologi Klimatologi Dan Geofisika, 7(1), 1–8. https://doi.org/10.36754/jmkg.v7i1.181 https://jurnal.stmkg.ac.id/index.php/jmkg/article/view/181
- Moriasi, D. N., Arnold, J. G., Liew, M. W. Van, Bingner, R. L., Harmel, R. D., & Veith, T. L. (2007). Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. American Society of Agricultural and Biological Engineers, 50(3), 885–900. https://doi.org/10.13031/2013.23153
- Morsy, M., El Afandi, G., & Naif, E. (2018). Cropsyst simulation and response of some wheat cultivars to late season drought. Italian Journal of Agrometeorology, 2018(1), 15–24. https://doi.org/10.19199/2018.1.2038-5625.015
- Nash, J. E., & Sutcliffe, J. V. (1970). River flow forecasting through conceptual models part I — A discussion of principles. Journal of Hydrology, 10, 282–290. https://doi.org/10.1016/0022-1694(70)90255-6
- Paredes, P., Wei, Z., Liu, Y., Xu, D., Xin, Y., Zhang, B., & Pereira, L. S. (2015). Performance assessment of the FAO AquaCrop model for soil water, soil evaporation, biomass and yield of soybeans in North China Plain. Agricultural Water Management, 152, 57–71. https://doi.org/10.1016/j.agwat.2014.12.007
- Pawar, G. S., Kale, M. U., & Lokhande, J. N. (2017). Response of AquaCrop Model to Different Irrigation Schedules for Irrigated Cabbage. Agricultural Research, 6(1), 73–81. https://doi.org/10.1007/s40003-016-0238-2
- Perdanatika, A., Suntoro, S., & Pardjanto, P. (2018). The Effects of Rice Husk Ash and Dolomite on Soybean Yield at Latosol Soil. SAINS TANAH - Journal of Soil Science and Agroclimatology, 15(1), 29. https://doi.org/10.15608/stjssa.v15i1.21620
- Raes, D. (2017). Book I: Understanding AquaCrop. In D. Raes (Ed.), AquaCrop training handbooks (pp. 1–52). Food and Agriculture Organization of the United Nations.
- Raes, D., Steduto, P., Hsiao, T. C., & Fereres, E. (2009). Aquacrop-The FAO crop model to simulate yield response to water: II. main algorithms and software description. Agronomy Journal, 101(3), 438–447. https://doi.org/10.2134/agronj2008.0140s
- Rockström, J., & Barron, J. (2007). Water productivity in rainfed systems: Overview of challenges and analysis of opportunities in water scarcity prone savannahs. Irrigation Science, 25(3), 299–311. https://doi.org/10.1007/s00271-007-0062-3
- Saseendran, S. A., Nielsen, D. C., Ma, L., Ahuja, L. R., & Vigil, M. F. (2010). Simulating alternative dryland rotational cropping systems in the Central Great Plains with RZWQM2. Agronomy Journal, 102(5), 1521–1534. https://doi.org/10.2134/agronj2010.0141
- Shrestha, N., Raes, D., Vanuytrecht, E., & Sah, S. K. (2013). Cereal yield stabilization in Terai (Nepal) by water and soil fertility management modeling. Agricultural Water Management2, 122, 53–62. https://doi.org/10.1016/j.agwat.2013.03.003
- Silva, V. de P. R. da, Silva, R. A. e, Maciel, G. F., Braga, C. C., Júnior, J. L. C. da S., Souza, E. P. de, Almeida, R. S. R., Silva, M. T., & Holanda, R. M. de. (2018). Calibration and validation of the AquaCrop model for the soybean crop grown under different levels of irrigation in the Motopiba region , Brazil. Ciência Rural, 48(1), 1–8. https://doi.org/10.1590/0103-8478cr20161118
- Steduto, P., Raes, D., Hsiao, T. C., Fereres, E., Heng, L. K., Howell, T. A., Evett, S. R., Rojas-Lara, B. A., Farahani, H. J., Izzi, G., Oweis, T. Y., Wani, S. P., Hoogeveen, J., & Geerts, S. (2009). Concepts and Applications of AquaCrop: The FAO Crop Water Productivity Model. In: Cao, W., White, J.W., Wang, E. (eds). Crop Modeling and Decision Support. (pp. 175–191). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01132-0_19
- Tukidin. (2010). Karakter Curah Hujan Di Indonesia. Jurnal Geografi, 7(2), 136–145. https://doi.org/10.15294/jg.v7i2.84 https://journal.unnes.ac.id/nju/index.php/JG/article/view/84
- Vanuytrecht, E., Raes, D., Willems, P., & Semenov, M. A. (2014). Comparing climate change impacts on cereals based on CMIP3 and EU-ENSEMBLES climate scenarios. Agricultural and Forest Meteorology, 195–196, 12–13. https://doi.org/10.1016/j.agrformet.2014.04.017
- Wang, E., Robertson, M. J., Hammer, G. L., Carberry, P. S., Holzworth, D., Meinke, H., Chapman, S. C., Hargreaves, J. N. G., Huth, N. I., & McLean, G. (2002). Development of a generic crop model template in the cropping system model APSIM. European Journal of Agronomy, 18(1–2), 121–140. https://doi.org/10.1016/S1161-0301(02)00100-4
- Xiong, Y., West, C. P., Brown, C. P., & Green, P. E. (2019). Digital image analysis of old world bluestem cover to estimate canopy development. Agronomy Journal, 111(3), 1247–1253. https://doi.org/10.2134/agronj2018.08.0502