Enhancing Vigor and Viability of Deteriorated True Shallot Seed by Matriconditioning Using Biofertilizer and Washed Rice Water

##plugins.themes.academic_pro.article.main##

Muhamad Wahyu Saputra
Vega Kartika Sari
Slameto
Tri Candra Setiawati
Ali Wafa
Toni Firmansyah
Sundahri Sundahri

Abstract

True Shallot Seed (TSS) is a healthy, cost-effective, and high-yielding alternative to shallot bulbs. However, TSS has a short shelf life due to deterioration during storage. Viability and vigor of deteriorated seed can be enhanced using Plant Growth Promoting Rhizobacteria (PGPR). Washed rice water contains macro and micronutrients that also support metabolic processes and improve the accumulation of seed nutrients during germination. Therefore, this study aimed to investigate the role of matriconditioning with a mixture of PGPR and rice washing water in enhancing shallot seed vigor and viability. Shallot seed used in the study decreased physiological quality with 9.09% moisture and 52.25% germination. Matriconditioning had 5 treatments, namely Control (M0), Matriconditioning without PGPR (M1), Matriconditioning plus PGPR RhizomaX (M2), Matriconditioning plus PGPR BenprimA (M3), and Matriconditioning plus PGPR FloraOne (M4). Washed rice water had 3 levels, namely Control (A0), 50% concentration (A1), and 100% concentration (A2). Other variables examined in this study included germination rate, maximum growth potential, relative growth rate, uniformity, and vigor index. Data were analyzed using Analysis of Variance (ANOVA), and Duncan test was applied for significant results at the 5% level. The results showed that matriconditioning using a mixture of rice husk charcoal and PGPR RhizomaX (M2) produced enhanced vigor and viability of deteriorated shallot seed. The application of leachate water for 5 days during germination, specifically at a concentration of 100% (A2), significantly improved vigor and viability. Finally, the interaction between treatment M2A2 had the best vigor and viability among all other treatments.

##plugins.themes.academic_pro.article.details##

Author Biographies

Muhamad Wahyu Saputra , University of Jember

Department of Agronomy, Faculty of Agriculture

Vega Kartika Sari , University of Jember

Department of Agronomy, Faculty of Agriculture

Slameto, University of Jember

Department of Agronomy, Faculty of Agriculture

Tri Candra Setiawati , University of Jember

Department of Soil Science, Faculty of Agriculture

Ali Wafa , University of Jember

Department of Plant Protection, Faculty of Agriculture

Sundahri Sundahri , University of Jember

Department of Agronomy, Faculty of Agriculture

How to Cite
1.
Saputra MW, Sari VK, Slameto, Setiawati TC, Wafa A, Firmansyah T, Sundahri S. Enhancing Vigor and Viability of Deteriorated True Shallot Seed by Matriconditioning Using Biofertilizer and Washed Rice Water. J. appl. agricultural sci. technol. [Internet]. 2024Nov.24 [cited 2024Dec.8];8(4):513-24. Available from: https://www.jaast.org/index.php/jaast/article/view/225

References

  1. Shahrajabian MH, Sun W, Cheng Q. Chinese onion, and shallot, originated in Asia, medicinal plants for healthy daily recipes. Not Sci Biol 2020;12:197–207. https://doi.org/10.15835/nsb12210725.
  2. Ounjaijean S, Chachiyo S, Kulprachakarn K, Boonyapranai K, Srichairatanakool S, Rerkasem K. Antioxidant and Anti-inflammatory Protective Properties of Thai Shallot (Allium ascalonicum cv. Chiangmai) Juice on Human Vascular Endothelial Cell Lines (EA.hy926). Walailak Journal of Science and Technology (WJST) 2019;16:175–84. https://doi.org/10.48048/wjst.2019.6222.
  3. Forma A, Chilimoniuk Z, Januszewski J, Sitarz R. The Potential Application of Allium Extracts in the Treatment of Gastrointestinal Cancers. Gastroenterol Insights 2021;12:136–46. https://doi.org/10.3390/gastroent12020012.
  4. Chakraborty AJ, Uddin TM, Matin Zidan BMR, Mitra S, Das R, Nainu F, et al. Allium cepa: A Treasure of Bioactive Phytochemicals with Prospective Health Benefits. Evidence-Based Complementary and Alternative Medicine 2022;2022:1–27. https://doi.org/10.1155/2022/4586318.
  5. Zhao X-X, Lin F-J, Li H, Li H-B, Wu D-T, Geng F, et al. Recent Advances in Bioactive Compounds, Health Functions, and Safety Concerns of Onion (Allium cepa L.). Front Nutr 2021;8. https://doi.org/10.3389/fnut.2021.669805.
  6. Saputri AS, Tondok ET, Hidayat SH. Insidensi Virus dan Cendawan pada Biji dan Umbi Bawang Merah. Jurnal Fitopatologi Indonesia 2019;14:222. https://doi.org/10.14692/jfi.14.6.222.
  7. Rosliani R, Waluyo N, Yufdy MP, Harmanto, Sulastrini I, Handayani T, et al. Benih Biji Bawang Merah (True Seed of Shallot) di Indonesia. Jakarta: IAARD Press; 2022. http://repository.pertanian.go.id/handle/123456789/16142
  8. Adiyoga W. Seed Systems in the Four Shallot Producing Areas of Java: A Focus Group Discussion. E3S Web of Conferences 2021;232:01003. https://doi.org/10.1051/e3sconf/202123201003.
  9. Rabinowitch HD. Shallot (Allium cepa L. Aggregatum Group) Breeding. In: Al-Khayri JM, Jain SM, Johnson D V, editors. Advances in Plant Breeding Strategies: Vegetable Crops, Cham: Springer International Publishing; 2021, p. 99–154. https://doi.org/10.1007/978-3-030-66965-2_3.
  10. Atman A. Teknologi Budidaya Bawang Merah Asal Biji. Jurnal Sains Agro 2021;6:11–21. https://doi.org/10.36355/jsa.v6i1.497.
  11. Yulyatin A, Haryati Y. Pengujian Daya Berkecambah Biji Bawang Merah Selama 7 Periode Simpan. BPTP Jawa Barat 2016;6:5–8. https://repository.pertanian.go.id/handle/123456789/6573
  12. Rahayu A, Waluyo N, Azmi C. Pengaruh Lama dan Ruang Simpan terhadap Perkecambahan Benih True Shallot Seed (TSS). Peningkatan Produktivitas Pertanian Era Society 5.0 Pasca Pandemi, Politeknik Negeri Jember; 2021, p. 244–54. https://doi.org/10.25047/agropross.2021.227.
  13. Fahrianty D, Poerwanto R, Widodo WD, Palupi ER. Improvement of Flowering and Seed Yield of Shallot Variety Bima through Vernalization and Application of GA3. Jurnal Ilmu Pertanian Indonesia 2020;25:245–52. https://doi.org/10.18343/jipi.25.2.245.
  14. Widiarti W, Wijaya I, Umarie I. Optimalisasi Teknologi Produsi True Shallot Seed (Biji Biologi) Bawang Merah (Allium ascalonicum L). Agritrop 2017;15:203–16. http://jurnal.unmuhjember.ac.id/index.php/AGRITROP/article/view/1174
  15. Sudjarwo HK, Moeljani IR, Pribadi DU. Pengaruh Lama Perendaman GA3 dan Beberapa Macam TSS Terhadap Pertumbuhan Tanaman Bawang Merah (Allium ascalonicum L.). Jurnal Ilmu-Ilmu Pertanian Indonesia 2021;23:129–35. https://doi.org/10.31186/jipi.23.2.129-135.
  16. Azmi C, Rahayu A, Rosliani R, Hermanto C. Pertumbuhan Benih True Shallot Seed (TSS) pada Berbagai Media Semai. In: Matra DD, Devy NF, editors. Prosiding Seminar Nasional PERHORTI 2020 "Sinergisme Membangun Kawasan Hortikultura Tangguh dan Menyehatkan”, Malang: Perhimpunan Hortikultura Indonesia (PERHORTI); 2020, p. 234–45. https://www.researchgate.net/publication/353174901_Pertumbuhan_Benih_True_Shallot_Seed_TSS_pada_Berbagai_Media_Semai
  17. Ranganathan U, Groot SPC. Seed Longevity and Deterioration. In: Dadlani M, Yadava DK, editors. Seed Science and Technology, Singapore: Springer Nature Singapore; 2023. https://doi.org/10.1007/978-981-19-5888-5.
  18. Panda D, Mondal S. Seed Enhancement for Sustainable Agriculture: An Overview of Recent Trends. Plant Arch 2020;20:2320–32. http://www.plantarchives.org/List%20SI%2020,%20SUPP-1,2020.html
  19. Pagano A, Macovei A, Xia X, Padula G, Hołubowicz R, Balestrazzi A. Seed Priming Applied to Onion-Like Crops: State of the Art and Open Questions. Agronomy 2023;13:288. https://doi.org/10.3390/agronomy13020288.
  20. Kenneth OC, Nwadibe EC, Kalu AU, Unah UV. Plant Growth Promoting Rhizobacteria (PGPR): A Novel Agent for Sustainable Food Production. Am J Agric Biol Sci 2019;14:35–54. https://doi.org/10.3844/ajabssp.2019.35.54.
  21. Ha-Tran DM, Nguyen TTM, Hung S-H, Huang E, Huang C-C. Roles of Plant Growth-Promoting Rhizobacteria (PGPR) in Stimulating Salinity Stress Defense in Plants: A Review. Int J Mol Sci 2021;22:3154. https://doi.org/10.3390/ijms22063154.
  22. Sundahri S, Mursyidto T, Setiawati TC, Susilo HA, Wafa A. Inducing The Viability of Deteriorated Jatropha Seed Through Matriconditioning Technology and Pseudomonas Fluorescens as Biological Agent. Devotion : Journal of Research and Community Service 2023;4:1352–73. https://doi.org/10.59188/devotion.v4i6.502.
  23. Martínez-Ballesta M del C, Egea-Gilabert C, Conesa E, Ochoa J, Vicente MJ, Franco JA, et al. The Importance of Ion Homeostasis and Nutrient Status in Seed Development and Germination. Agronomy 2020;10:504. https://doi.org/10.3390/agronomy10040504.
  24. Nabayi A, Sung CTB, Zuan ATK, Paing TN, Akhir NIM. Chemical and Microbial Characterization of Washed Rice Water Waste to Assess Its Potential as Plant Fertilizer and for Increasing Soil Health. Agronomy 2021;11:2391. https://doi.org/10.3390/agronomy11122391.
  25. Utami ESW, Hariyanto S. Organic Compounds: Contents and Their Role in Improving Seed Germination and Protocorm Development in Orchids. International Journal of Agronomy 2020;2020:1–12. https://doi.org/10.1155/2020/2795108.
  26. Abdelkader M, Voronina L, Puchkov M, Shcherbakova N, Pakina E, Zargar M, et al. Seed Priming with Exogenous Amino Acids Improves Germination Rates and Enhances Photosynthetic Pigments of Onion Seedlings (Allium cepa L.). Horticulturae 2023;9:80. https://doi.org/10.3390/horticulturae9010080.
  27. Menteri Pertanian Republik Indonesia. Pedoman Teknik Sertifikasi Benih Bawang Merah. Indonesia; 2017. https://fungsional.pertanian.go.id/ujikompjf/assets/file/elearning/elearning_72_5f22855bd80e3.pdf
  28. Direktorat Perbenihan Hortikultura. Pedoman Uji Mutu Laboratorium. Jakarta: Direktorat Jenderal Hortikultura Kementerian Pertanian; 2016. https://fungsional.pertanian.go.id/ujikompjf/assets/file/elearning/elearning_72_5f22872c06bb4.pdf
  29. Ingmar O, Setiyono S, Savitri DA, Novijanto N. Effect of Seed Coating and Packaging Material on Viability and Vigor of Soybean Seed in Room Temperature Storage. Journal of Applied Agricultural Science and Technology 2023;7:109–18. https://doi.org/10.55043/jaast.v7i2.127.
  30. Adetunji AE, Adetunji TL, Varghese B, Sershen, Pammenter NW. Oxidative Stress, Ageing and Methods of Seed Invigoration: An Overview and Perspectives. Agronomy 2021;11:2369. https://doi.org/10.3390/agronomy11122369.
  31. Joo EH, Kim YR, Kim N, Jung JE, Han SH, Cho HY. Effect of Endogenic and Exogenic Oxidative Stress Triggers on Adverse Pregnancy Outcomes: Preeclampsia, Fetal Growth Restriction, Gestational Diabetes Mellitus and Preterm Birth. Int J Mol Sci 2021;22:10122. https://doi.org/10.3390/ijms221810122.
  32. Wang Y, Jiang W, Cheng J, Guo W, Li Y, Li C. Physiological and Proteomic Analysis of Seed Germination under Salt Stress in Mulberry. Frontiers in Bioscience-Landmark 2023;28:49. https://doi.org/10.31083/j.fbl2803049.
  33. Chomontowski C, Wzorek H, Podlaski S. Impact of sugar beet seed priming on seed quality and performance under diversified environmental conditions of germination, emergence and growth. J Plant Growth Regul 2020;39:183–9. https://doi.org/10.1007/s00344-019-09973-2.
  34. El-Mergawi RA, Abd El-Wahed MSA. Effect of exogenous salicylic acid or indole acetic acid on their endogenous levels, germination, and growth in maize. Bull Natl Res Cent 2020;44:167. https://doi.org/10.1186/s42269-020-00416-7.
  35. Kosakivska I V, Vedenicheva NP, Babenko LM, Voytenko L V, Romanenko KO, Vasyuk VA. Exogenous phytohormones in the regulation of growth and development of cereals under abiotic stresses. Mol Biol Rep 2022;49:617–28. https://doi.org/10.1007/s11033-021-06802-2.
  36. Mudi L, Sutariati GAK, Hamriani, Roby. Aplikasi Konsorsium Endo-Rhizobakteri Untuk Meningkatkan Vigor Benih Padi Gogo Lokal Consortium. Jurnal Agrotech 2021;11:1–7. https://doi.org/10.31970/agrotech.v11i1.61.
  37. Sánchez-Montesinos B, Diánez F, Moreno-Gavíra A, Gea FJ, Santos M. Role of Trichoderma aggressivum f. europaeum as Plant-Growth Promoter in Horticulture. Agronomy 2020;10:1004. https://doi.org/10.3390/agronomy10071004.
  38. Farooq MA, Ma W, Shen S, Gu A. Underlying Biochemical and Molecular Mechanisms for Seed Germination. Int J Mol Sci 2022;23:8502. https://doi.org/10.3390/ijms23158502.
  39. Pereira C, Lourenço VM, Menezes R, Brites C. Rice Compounds with Impact on Diabetes Control. Foods 2021;10:1992. https://doi.org/10.3390/foods10091992.
  40. Price J, Li T-C, Kang SG, Na JK, Jang J-C. Mechanisms of Glucose Signaling during Germination of Arabidopsis. Plant Physiol 2003;132:1424–38. https://doi.org/10.1104/pp.103.020347.
  41. Yuan K, Wysocka-Diller J. Phytohormone signalling pathways interact with sugars during seed germination and seedling development. J Exp Bot 2006;57:3359–67. https://doi.org/10.1093/jxb/erl096.
  42. Hu M, Shi Z, Zhang Z, Zhang Y, Li H. Effects of exogenous glucose on seed germination and antioxidant capacity in wheat seedlings under salt stress. Plant Growth Regul 2012;68:177–88. https://doi.org/10.1007/s10725-012-9705-3.
  43. Denaya S, Yulianti R, Pambudi A, Effendi Y. Novel microbial consortium formulation as plant growth promoting bacteria (PGPB) agent. IOP Conf Ser Earth Environ Sci 2021;637:012030. https://doi.org/10.1088/1755-1315/637/1/012030.
  44. Dhungana SA, Itoh K. Effects of Co-Inoculation of Indole-3-Acetic Acid-Producing and -Degrading Bacterial Endophytes on Plant Growth. Horticulturae 2019;5:17. https://doi.org/10.3390/horticulturae5010017.