Effect of the Combination of the Growth Regulators and Putrescine on the Somatic Embryogenesis of Wheat (Triticum Aestivum L.) on Some Types of Explants

##plugins.themes.academic_pro.article.main##

Yusniwati Yusniwati
Ryan Budi Setiawan

Abstract

Plant breeding programs need to be carried out in order to improve the genetics of wheat that is able to adapt to tropical environments through hybridization, mutation induction, tissue culture, and genetic transformation.  In vitro culture through somatic embryogenesis pathways plays an important role in genetic improvement and its integration with other breeding programs can positively affect the improvement of wheat quality, quantity, and development in Indonesia. The purpose of this study was to obtain an embryogenic callus induction method from the Dewata variety using five different types of explants, namely mature Seeds, immature embryos, immature seeds, leaf,  stem, and to obtain combination of plant growth regulators and putrescine on somatic embryogenesis of wheat.   The experimental design was prepared based on a complete randomized design with a combination treatment of embryogenic callus induction media consisting of 9 levels, namely: 1 ppm 2.4- D, 1 ppm 2.4-D + 1 ppm Picloram, ppm 2.4-D + 1 mg / L Picloram, 1 ppm 2.4-D + 10-4  M Putrescine, 1 ppm 2.4-D + 1 ppm Picloram +10-4  M Putrescine, 2 ppm 2.4-D + 1 ppm Picloram + 10-4  M Putrescine, 1 ppm 2.4 D + 10-3 M Putrescine, 1 ppm 2.4 D + 1 ppm Picloram + 10-3 M Putrescine, 2 ppm 2.4 D + 1 ppm Picloram + 10-3 M Putrescine. The results showed that the media used was able to induce embryogenic callus using mature seed and immature embryo, but  immature seed and leaf were not able to produce embryogenic callus. The best media  that produced the highest percentage of embryogenic callus was 2 ppm 2.4-D + 1 ppm Picloram + 10-4  M Putrescine with as much as 85.9% in young embryo explants.

##plugins.themes.academic_pro.article.details##

Author Biographies

Yusniwati Yusniwati, Andalas University

Department of Agronomi

Ryan Budi Setiawan, Andalas University

Department of Agronomi

How to Cite
Yusniwati, Y., & Setiawan, R. B. . (2023). Effect of the Combination of the Growth Regulators and Putrescine on the Somatic Embryogenesis of Wheat (Triticum Aestivum L.) on Some Types of Explants. Journal of Applied Agricultural Science and Technology, 7(4), 414-423. https://doi.org/10.55043/jaast.v7i4.158

References

  1. Abiri, R., Maziah, M., Shaharuddin, N. A., Yusof, Z. N. B., Atabaki, N., Hanafi, M. M., Sahebi, M., Azizi, P., Kalhori, N., & Valdiani, A. (2017). Enhancing somatic embryogenesis of Malaysian rice cultivar MR219 using adjuvant materials in a high-efficiency protocol. Int. J. Environ. Sci. Technol, 14, 1091–1108. https://DOI/10.1007/s13762-016-1221-y.
  2. Adhikari, S. R., & Pant, B. (2013). Induction and proliferation of in vitro mass of callus of Withania somnifera L. Dunal. Research in Plant Sciences, 1(3), 58-61. https://doi.org/10.12691/plant-1-3-2
  3. Ariani, M. (2010). Community level food consumption analysis supports the achievement food diversification. Gizi Indon, 33(1), 20-28. https://doi.org/10.36457/gizindo.v33i1.84
  4. Asghar, S., Ghori, N., Hyat, F., Li, Y., & Chen, C. (2022). Use of auxin and cytokinin for somatic embryogenesis in plant: a story from competence towards completion. Plant Growth Regulation, 11, 1-17. https://doi.org/10.1007/s10725-022-00923-9
  5. Aydin, M., Hosseinpour, A., Haliloğlu, K., & Tosun, M. (2016). Effect of polyamines on somatic embryogenesis via mature embryo in wheat. Turkish Journal of Biology, 40, 1178-1184. https://doi.org/10.3906/biy-1601-21. (PDF) Effect of polyamines on somatic embryogenesis via mature embryo in wheat (researchgate.net)
  6. Central Statistics Agency. (2020, 10 November 2021). The Value of Wheat Imports. Received from https://www.bps.go.id/statictable/2019/02/14/2016/impor-biji-gandum-dan-meslin-menurut-negara-asal-utama-2010-2018.html
  7. Grant, J. N., Burris, J. N., Stewart, C. N. J., & Lenaghan, S. C. (2017). Improved tissue culture conditions for the emerging C4 model Panicum hallii. BMC Biotechnol, 17, 39-44. https://doi.org/10.1186/s12896-017-0359-0
  8. Hesami, M., Daneshvar, M. H., Yoosefzadeh-Najafabadi, M., & Alizadeh, M. (2018). Effect of plant growth regulators on indirect shoot organogenesis of Ficus religiosa through seedling derived petiole segments. Journal of Genetic Engeneering Biotechnology, 16(1), 175–180. https://doi.org/10.1016/j.jgeb.2017.11.001
  9. Hoang, N. V., Park, C., Kamran, M., & Lee, J. Y. (2020). Gene regulatory network guided investigations and engineering of storage root development in root crops. Front. Plant Science, 11, 762-770. https://doi.org/10.3389/fpls.2020.00762
  10. Kalhori, N., Nulit, R., Go, R., Zulkifly, S., Azizi, P., & Abiri, R. (2017). Selection, characterizations and somatic embryogenesis of Malaysian salt-tolerant rice (Oryza sativa cv. MR219) through callogenesis. Int. J. Agric. Biol, 19, 157–163. https://doi.org/10.17957/IJAB/15.0258
  11. Kolachevskaya, O. O., Lomin, S. N., Arkhipov, D. V., & Romanov, G. A. (2019). Auxins in potato: molecular aspects and emerging roles in tuber formation and stress resistance. Plant Cell Reports, 38, 681-698. https://doi.org/10.1007/s00299-019-02395-0
  12. Komamine, A., Murata, N., & Nomura, K. (2005). Mechanisme of somatic embryogenesis in carrot suspension cultures morphology, physiology, biochemistry, and molecular biology. In vitro Cell Development Biological Plant, 41, 6-10. https://doi.org/10.1079/IVP2004593
  13. Lee, S., & Huang, W. (2014). Osmotic stress stimulates shoot organogenesis in callus of rice (Oryza sativa L.) via auxin signaling and carbohydrate metabolism regulation. Plant Growth Regulator, 73, 193-204. https://doi.org/10.1007/s10725-013-9880-x.
  14. Mostafiz, S. B., & Wagiran, A. (2018). Efficient callus induction and regeneration in selected indica rice. Agronomy, 8(5), 77-83. https://doi.org/10.3390/agronomy8050077
  15. Rakesh, B., Sudheer, W. N., & Nagella, P. (2021). Role of polyamines in plant tissue culture: An overview. Plant Cell, Tissue and Organ Culture, 145, 487-506. https://doi.org/10.1007/s11240-021-02029-y
  16. Ren, X., Liu, Y., & Jeong, B. R. (2020). Enhanced Somatic Embryo Induction of a Tree Peony Paeoni aostii ‘Fengdan’, by a Combination of 6-benzyl amino purine (BA) and 1 naphthyl acetic Acid (NAA). Plants, 9(1), 3-10. https://doi.org/10.3390/plants9010003
  17. Setiawan, R. B. (2015). Induksi Mutasi Kalus Embriogenik Gandum (Triticum aestivum L.) melalui Iradiasi Sinar Gamma untuk Toleransi Suhu Tinggi [Thesis]. https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&cad=rja&uact=8&ved=2ahUKEwil-9TRt-iBAxUdzzgGHcujC0cQFnoECAsQAQ&url=https%3A%2F%2Fjournal.ipb.ac.id%2Findex.php%2Fjurnalagronomi%2Farticle%2Fdownload%2F9589%2Fpdf%2F&usg=AOvVaw0kx-qxNSFxyGRazRb29Too&opi=89978449
  18. Sharma, V. K., Hansch, R., Mendel, R. R., & Schulze, J. (2005). Mature embryo axis- based high frequency somatic embryogenesis and plant regeneration from multiple cultivars of barley (Hordeum vulgare L.). Journal of Experimental Botany, 56(417), 1913-1922. https://doi.org/10.1039/JXB/ERI186
  19. Smit, M. E., & Weijers, D. (2015) The role of auxin signaling in early embryo pattern formation. Curr Opin Plant Biol, 28, 99-105. https://doi.org/10.1016/J.PBI. 2015.10.001
  20. Tamimi, S. M., & Othman, H. (2021). Callus Induction and Regeneration from Germinating Mature Embryos of Wheat (Triticum aestivum L.). Sains Malaysiana, 50(4), 889-896. http://doi.org/10.17576/jsm-2021-5004-01
  21. Toppo, E., Ramakrishnan, M., Ceasar, S. A., Sivasankaran, K., Premkumar, A., & Ignacimuthu, S. (2014). Regeneration from mature scutellum explants of rice variety IR64 (Oryza sativa L.) through direct and indirect organogenesis. J. Global Agric. Ecol., 1(1), 1-9. https://www.ikppress.org/index.php/JOGAE/article/view/246