An Utilizing Marginal Red Yellow Podzolic Soil as a Growing Medium for Auxin-Soaked Cutting Propagation of Red Master Grapes (Vitis vinifera L)

##plugins.themes.academic_pro.article.main##

Saktiyono Sigit Tri Pamungkas
Yudhi Pramudya
Fitria Nugraheni Sukmawati
Tusrianto Tusrianto
Farrah Fadhillah Hanum

Abstract

Grape (Vitis vinifera) cultivation is hampered by a lack of suitable land and challenging nurseries. Use of crimson yellow podzolic soil for vine cuttings can be suboptimal. Although podzolic soil has a low capacity to absorb macro- and micronutrients and an acidic pH, it can nevertheless be used as a growing medium. A synthetic growth regulator (ZPT) bath of naphthalene acetic acid (NAA) needs to be added to the local red master grape variety, which has started to develop as a scion in nurseries. In order to assess the impacts of NAA-soaked concentrations on podzolic soil media and identify the morphological traits of local Red Master grape cuttings, this study set out to identify these traits. Its goal was to find out how auxin affected the development and yield of grapes (Vitis vinifera L.) grown in red yellow podzolic soil. A non-factorial totally randomized design with one factor (NAA concentration) was used in the study, with a block of 4 treatments and 3 repetitions. The varied NAA concentrations used in the treatment procedure included F0 (0 g L-1), F1 (2 g L-1), F2 (4 g L-1), and F3 (6 g L-1). The variables that were observed included the number of shoot bursts, the timing of leaf emergence, the number of sheet leaves, the length of the tendrils, and the proportion of live cuttings. ANOVA was used to tabulate and analyze observational data at a 5% level, and DMRT analysis was used to continue the analysis at the same level. According to the results, soaked NAA at a concentration of 0 g L-1 (S0) as the control treatment had the best results for the variable number of shoots and leaves, while a concentration of 2 g L-1 (S1) had the best results for the variable length of tendrils. However, soaked NAA had no significant impact on the variable when leaves emerged. Soaking auxin at the bottom of cuttings had no effect on shoot formation. Reduction of auxin due to defoliation can result in the expression of the isopentenyl-transferase (IPT) gene. Auxins, such as Indole-3-acetic acid (NAA), are usually involved in the regulation of root and leaf growth. If a plant has many leaves and few roots without the use of additional NAA or auxin, several factors may play a role, such as plant genetics, environmental conditions, and environmental stress. The use of additional NAA or auxin can explicitly affect the growth of roots and leaves. The survival percentage of cuttings is still low because it is influenced by the quality (material) of the cuttings, the age of the parent tree, growing media and water availability.

##plugins.themes.academic_pro.article.details##

Author Biographies

Saktiyono Sigit Tri Pamungkas, Polytechnic of Lembaga Pendidikan Perkebunan (LPP)

Department of Plantation Crop Farming

Yudhi Pramudya, Polytechnic of Lembaga Pendidikan Perkebunan (LPP)

Department of Plantation Crop Farming

Fitria Nugraheni Sukmawati, Polytechnic of Lembaga Pendidikan Perkebunan (LPP)

Department of Plantation Management

Tusrianto Tusrianto, Universitas Muhammadiyah Purwokerto

Faculty of Pharmacy

Farrah Fadhillah Hanum, Universitas Ahmad Dahlan

Faculty of Industrial Engineering

 

How to Cite
Pamungkas, S. S. T. ., Pramudya, Y. ., Sukmawati, F. N., Tusrianto, T., & Hanum, F. F. . (2023). An Utilizing Marginal Red Yellow Podzolic Soil as a Growing Medium for Auxin-Soaked Cutting Propagation of Red Master Grapes (Vitis vinifera L). Journal of Applied Agricultural Science and Technology, 7(4), 346-364. https://doi.org/10.55043/jaast.v7i4.86

References

  1. Altamura, M. M., Piacentini, D., Rovere, F. D., Fattorini, L., Falasca, G., & Betti, C. (2023). New Paradigms in Brassinosteroids, Strigolactones, Sphingolipids, and Nitric Oxide Interaction in the Control of Lateral and Adventitious Root Formation. Plants, 12(2), 413. https://doi.org/10.3390/plants12020413
  2. Banerjee, P., Venugopalan, V. K., Nath, R., Chakraborty, P. K., Gaber, A., Alsanie, W. F., Raafat, B. M., & Hossain, A. (2022). Seed Priming and Foliar Application of Nutrients Influence the Productivity of Relay Grass Pea (Lathyrus sativus L.) through Accelerating the Photosynthetically Active Radiation (PAR) Use Efficiency. Agronomy, 12(5), 1–18. https://doi.org/10.3390/agronomy12051125
  3. Caruso, G., Palai, G., Gucci, R., & D’Onofrio, C. (2022). The effect of regulated deficit irrigation on growth, yield, and berry quality of grapevines (cv. Sangiovese) grafted on rootstocks with different resistance to water deficit. Irrigation Science, 41, 453-467. https://doi.org/10.1007/s00271-022-00773-3
  4. Carvalho, L. C., Coito, J. L., Colaço, S., Sangiogo, M., & Amâncio, S. (2015). Heat stress in grapevine: The pros and cons of acclimation. Plant Cell and Environment, 38(4), 777–789. https://doi.org/10.1111/pce.12445
  5. Chang, X. Y., Zhang, K., Yuan, Y., Ni, P., Ma, J., Liu, H., Gong, S., Yang, G. S., & Bai, M. (2022). A simple, rapid, and quantifiable system for studying adventitious root formation in grapevine. Plant Growth Regulation, 98(1), 117–126. https://doi.org/10.1007/s10725-022-00838-5
  6. Chen, L., Cai, M., Chen, M., Ke, W., Pan, Y., Huang, J., Zhang, J., & Peng, C. (2022). Genome-Wide Characterization of PIN Auxin Efflux Carrier Gene Family in Mikania micrantha. International Journal of Molecular Sciences, 23(17). https://doi.org/10.3390/ijms231710183
  7. Del Bel, Z., Andrade, A., Lindström, L., Alvarez, D., Vigliocco, A., & Alemano, S. (2023). The role of the sunflower seed coat and endosperm in the control of seed dormancy and germination: phytohormone profile and their interaction with seed tissues. Plant Growth Regulation, 1–14. https://doi.org/10.1007/s10725-023-00967-5
  8. del Rosario Cárdenas-Aquino, M., Sarria-Guzmán, Y., & Martínez-Antonio, A. (2022). Review: Isoprenoid and aromatic cytokinins in shoot branching. Plant Science, 319, 111240. https://doi.org/10.1016/j.plantsci.2022.111240
  9. Doğan, B., & Gülser, C. (2019). Assessment of soil quality for Vineyard fields: A case study in Menderes district of Izmir, Turkey. Eurasian Journal of Soil Science, 8(2), 176–183. https://doi.org/10.18393/ejss.551874
  10. Domagalska, M. A., & Leyser, O. (2011). Signal integration in the control of shoot branching. Nature Reviews Molecular Cell Biology, 12(4), 211–221. https://doi.org/10.1038/nrm3088
  11. Dong, Y., Zhang, S., Qin, Q., Cai, Y., & Wu, D. (2023). Transcriptome sequencing analysis revealing the potential mechanism of seed germination in Pulsatilla chinensis (Bunge) Regel. Seed Science Research, 33(1), 23-38. https://doi.org/10.1017/S0960258523000089
  12. Ephrem, N., Nyalala, S., & Josiane, U. K. N. (2022). Suitability of sand amended with carbonized rice husks and goat manure as a growing medium. Journal of Horticulture and Forestry, 14(1), 10–15. https://doi.org/10.5897/jhf2021.0684
  13. Farhain, M. M., Cheema, M., Katanda, Y., Nadeem, M., Javed, B., Thomas, R., Saha, R., & Galagedara, L. (2022). Potential of developing podzolic soil-based potting media from wood ash, paper sludge and biochar. Journal of Environmental Management, 301, 113811. https://doi.org/10.1016/j.jenvman.2021.113811
  14. Farooq, M., Kakar, K., Golly, M. K., Ilyas, N., Zib, B., Khan, I., Khan, S., Khan, I., Saboor, A., & Bakhtiar, M. (2018). Comparative Effect of Potting Media on Sprouting and Seedling Growth of Grape Cuttings. International Journal of Environmental & Agriculture Research (IJOEAR), 4(3), 82–89. https://doi.org/10.5281/zenodo.1215842
  15. Friml, J. (2022). Fourteen Stations of Auxin. Cold Spring Harbor Perspectives in Biology, 14(5). https://doi.org/10.1101/cshperspect.a039859
  16. Fritz, J., Lauer, F., Wilkening, A., Masson, P., & Peth, S. (2021). Aggregate stability and visual evaluation of soil structure in biodynamic cultivation of Burgundy vineyard soils. Biological Agriculture and Horticulture, 37(3), 168–182. https://doi.org/10.1080/01448765.2021.1929480
  17. Hawezy, S. M. N. (2023). Grafting of Thompson Seedless Scions onto Hardwood Cuttings of Three Grapevine Cultivars. Zanco Journal of Pure and Applied Sciences, 35(2), 111–117.
  18. Hsieh, C.-H., Liang, Z.-C., Shieh, W.-J., Chang, S.-L., & Ho, W.-J. (2022). Effects of Nutrients and Growth Regulators on Seed Germination and Development of Juvenile Rhizome Proliferation of Gastrodia elata In Vitro. Agriculture, 12(8), 1210. https://doi.org/10.3390/agriculture12081210
  19. Huntley, B. J. (2023). Soil, Water and Nutrients. Springer: Ecology of Angola, 127–147. https://doi.org/10.1007/978-3-031-18923-4_6
  20. Jyoti, Kumar, H., & Kumar, V. (2023). Auxin Biosynthesis and Metabolism. In. Taria, S., (Ed). Molecular Biology and Plant Physiology, 61-75. AkiNik Publications.
  21. Kanika, & Saxena, D. (2020). A Review on Vegetative Propagation of Aonla. International Journal of Current Microbiology and Applied Sciences, 9(12), 607–616. https://doi.org/10.20546/ijcmas.2020.912.072
  22. Klupczyńska, E. A., & Pawłowski, T. A. (2021). Regulation of seed dormancy and germination mechanisms in a changing environment. International Journal of Molecular Sciences, 22(3), 1–18. https://doi.org/10.3390/ijms22031357
  23. Kurepa, J., & Smalle, J. A. (2022). Auxin/Cytokinin Antagonistic Control of the Shoot/Root Growth Ratio and Its Relevance for Adaptation to Drought and Nutrient Deficiency Stresses. International Journal of Molecular Sciences, 23(4). https://doi.org/10.3390/ijms23041933
  24. Lang, C. P., Merkt, N., Geilfus, C.-M., Graeff–Hönninger, S., Simon, J., Rennenberg, H., & Zörb, C. (2019). Interaction between grapevines and trees: effects on water relations, nitrogen nutrition, and wine. Archives of Agronomy and Soil Science, 65(2), 224–239. https://doi.org/10.1080/03650340.2018.1493197
  25. Li, Y. Y., Hao, Z. G., Miao, S., Zhang, X., Li, J. Q., Guo, S. X., & Lee, Y. I. (2022). Profiles of Cytokinins Metabolic Genes and Endogenous Cytokinins Dynamics during Shoot Multiplication In Vitro of Phalaenopsis. International Journal of Molecular Sciences, 23(7), 1–16. https://doi.org/10.3390/ijms23073755
  26. Li, Z., Chen, Q., Gao, F., Meng, Q., Li, M., Zhang, Y., Zhang, P., Zhang, M., & Liu, Z. (2021). Controlled-release urea combined with fulvic acid enhanced carbon/nitrogen metabolic processes and maize growth. Journal of the Science of Food and Agriculture, 102(9), 3644–3654. https://doi.org/10.1002/jsfa.11711
  27. Mežaka, I., Kļaviņa, D., Kaļāne, L., & Kronberga, A. (2023). Large-Scale In Vitro Propagation and Ex Vitro Adaptation of the Endangered Medicinal Plant Eryngium maritimum L. Horticulturae, 9(2), 271. https://doi.org/10.3390/horticulturae9020271
  28. Mishra, B. S., Sharma, M., & Laxmi, A. (2021). Role of sugar and auxin crosstalk in plant growth and development. Physiologia Plantarum, 174(1), 1–21. https://doi.org/10.1111/ppl.13546
  29. Mohsen, A. T., Stino, R. G., Abd Allatif, A. M., & Zaid, N. M. (2020). In vitro evaluation of some grapevine rootstocks grown under drought stress. Plant Archives, 20, 1029–1034. http://www.plantarchives.org/SPECIAL%20ISSUE%2020-1/1029-1034%20(89).pdf
  30. Nautiyal, P. C., Sivasubramaniam, K., & Dadlani, M. (2023). Seed Dormancy and Regulation of Germination. Seed Science and Technology, 39–66. https://doi.org/10.1007/978-981-19-5888-5_3
  31. Nezami, E., & Gallego, P. P. (2023). History, Phylogeny, Biodiversity, and New Computer-Based Tools for Efficient Micropropagation and Conservation of Pistachio (Pistacia spp.) Germplasm. Plants, 12(2), 323. https://doi.org/10.3390/plants12020323
  32. Ohbayashi, I., Sakamoto, Y., Kuwae, H., Kasahara, H., & Sugiyama, M. (2022). Enhancement of shoot regeneration by treatment with inhibitors of auxin biosynthesis and transport during callus induction in tissue culture of Arabidopsis thaliana. Plant Biotechnology, 39(1), 43–50. https://doi.org/10.5511/plantbiotechnology.21.1225a
  33. Papon, N., & Courdavault, V. (2022). ARResting cytokinin signaling for salt-stress tolerance. Plant Science, 314, 111116. https://doi.org/10.1016/j.plantsci.2021.111116
  34. Salem, J., Hassanein, A., El‐wakil, D. A., & Loutfy, N. (2022). Interaction between Growth Regulators Controls In Vitro Shoot Multiplication in Paulownia and Selection of NaCl‐Tolerant Variants. Plants, 11(4), 498. https://doi.org/10.3390/plants11040498
  35. Samburova, V., Schneider, E., Rüger, C. P., Inouye, S., Sion, B., Axelrod, K., Bahdanovich, P., Friederici, L., Raeofy, Y., Berli, M., … & Moosmuller, H. (2023). Modification of Soil Hydroscopic and Chemical Properties Caused by Four Recent California, USA Megafires. Fire, 6(5), 186. https://doi.org/10.3390/fire6050186
  36. Scheiner, J., & King, A. (2020). Propagating Grapevines Dormant Hardwood Cuttings. Book, 116(4/19), 1–8.
  37. Shanker, K., Misra, S., Topwal, M., & Singh, V. K. (2019). Research review on use of different rooting media in fruit crops. Journal of Pharmacognosy and Phytochemistry, 8(5), 258–261. https://www.phytojournal.com/archives/2019.v8.i5.9564/research-review-on-use-of-different-rooting-media-in-fruit-crops
  38. Shi, J., Wang, X., & Wang, E. (2023). Mycorrhizal symbiosis in plant growth and stress adaptation: From genes to ecosystems. Annual Review of Plant Biology, 74, 569-607. https://doi.org/10.1146/annurev-arplant-061722-090342
  39. Singh, K. K., & Singh, K. P. (2018). Propagation of citrus species through cutting: A review. Journal of Medicinal Plants Studies, 6(1), 167–172. https://www.researchgate.net/publication/343821316
  40. Somasiri, I. V., Herath, H., Ratnayake, R. M. C. S., & Senanayake, S. P. (2023). Propagation of Antidesma alexiteria and Syzygium caryophyllatum, two underexploited fruit plants in Sri Lanka: Effect of cutting types, potting media and auxin application. Dendrobiology, 89, 65-76. https://doi.org/10.12657/denbio.089.007
  41. Swain, R., Sahoo, S., Behera, M., & Rout, G. R. (2023). Instigating prevalent abiotic stress resilience in crop by exogenous application of phytohormones and nutrient. Frontiers in Plant Science, 14. https://doi.org/10.3389/fpls.2023.1104874
  42. Sybilska, E., & Daszkowska-Golec, A. (2023). A complex signaling trio in seed germination: Auxin-JA-ABA. Trends in Plant Science, 28(8) 873-875. https://doi.org/10.1016/j.tplants.2023.05.003
  43. Tammam, A. A., Shehata, R. A. M. M., Pessarakli, M., & El-Aggan, W. H. (2022). Vermicompost and its role in alleviation of salt stress in plants – I. Impact of vermicompost on growth and nutrient uptake of salt-stressed plants. Journal of Plant Nutrition, 46(7), 1446-1457. https://doi.org/10.1080/01904167.2022.2072741
  44. Tanaka, M., Keira, M., Yoon, D.-K., Mae, T., Ishida, H., Makino, A., & Ishiyama, K. (2022). Photosynthetic Enhancement, Lifespan Extension, and Leaf Area Enlargement in Flag Leaves Increased the Yield of Transgenic Rice Plants Overproducing Rubisco Under Sufficient N Fertilization. Rice, 15(1), 10. https://doi.org/10.1186/s12284-022-00557-5
  45. Tingskou, R., & Unc, A. (2023). Impact of fertilizer source on the dynamics of carbon and nutrients in a podzol designated for land-use conversion. Soil Use and Management. https://doi.org/10.1111/sum.12906
  46. Waite, H., Whitelaw-Weckert, M., & Torley, P. (2015). Grapevine propagation: Principles and methods for the production of high-quality grapevine planting material. New Zealand Journal of Crop and Horticultural Science, 43(2), 144–161. https://doi.org/10.1080/01140671.2014.978340
  47. Wang, H. L., Yang, Q., Tan, S., Wang, T., Zhang, Y., Yang, Y., Yin, W., Xia, X., Guo, H., & Li, Z. (2022a). Regulation of cytokinin biosynthesis using PtRD26pro-IPT module improves drought tolerance through PtARR10-PtYUC4/5-mediated reactive oxygen species removal in Populus. Journal of Integrative Plant Biology, 64(3), 771–786. https://doi.org/10.1111/jipb.13218
  48. Wang, N., Chen, J., Gao, Y., Zhou, Y., Chen, M., Xu, Z., Fang, Z., & Ma, Y. (2023). Genomic analysis of isopentenyltransferase genes and functional characterization of TaIPT8 indicates positive effects of cytokinins on drought tolerance in wheat. The Crop Journal, 11(1), 46–56. https://doi.org/10.1016/j.cj.2022.04.010
  49. Wang, Y., Khan, M. A., Zhu, Z., Hai, T., Sang, Z., Jia, Z., & Ma, L. (2022b). Histological, Morpho-Physiological, and Biochemical Changes during Adventitious Rooting Induced by Exogenous Auxin in Magnolia wufengensis Cuttings. Forests, 13(6). https://doi.org/10.3390/f13060925
  50. Yin, Y., Han, B., Li, M., Jia, N., Liu, C., Sun, Y., Wang, Y., Gao, Q., & Guo, Z. (2023). Multiplication, Phenological Period and Growth Vigor of Thirty-One Grapevine Rootstocks and the Role of Parentage in Vigor Heredity. Horticulturae, 9(2), 241. https://doi.org/10.3390/horticulturae9020241
  51. Yu, Z., Zhang, F., Friml, J., & Ding, Z. (2022). Auxin signaling: Research advances over the past 30 years. Journal of Integrative Plant Biology, 64(2), 371–392. https://doi.org/10.1111/jipb.13225
  52. Zheng, Z. L. (2022). Cyclin-Dependent Kinases and CTD Phosphatases in Cell Cycle Transcriptional Control: Conservation across Eukaryotic Kingdoms and Uniqueness to Plants. Cells, 11(2). https://doi.org/10.3390/cells11020279

Most read articles by the same author(s)