Optimization of Gambier Industry Wastewater Treatment Plant (WWTP) Performance: a Systematic Approach for Environmental Sustainability


Erda Rahmilaila Desfitri
Reni Desmiarti
Adinda Ratu Permata
Elizarni Elizarni


The gambier industry in West Sumatra, particularly in Payakumbuh, is Indonesia's largest producer of gambier, contributing approximately 80-90% of the national production. This high production rate results in increased waste generated during the production process. This article discusses the potential environmental pollution from wastewater from the gambier industry and efforts to address this issue. The study notes that coagulation-flocculation and adsorption methods have efficiently treated textile industry wastewater. The study discusses the Wastewater Treatment Plant (WWTP) conditions in the gambier processing industry before optimization and the steps taken to improve its performance. Additionally, the study analyzes wastewater characteristics before and after treatment. The results of this study indicate that adding aerators and pH-adjusting agents to the WWTP can improve wastewater treatment performance, resulting in effluent that meets the quality standards set by government regulations. Moreover, treating wastewater with adding Poly Aluminium Chloride (PAC) reduces COD and BOD, indicating the degradation of organic components in gambier waste. COD removal efficiency is 92.65%, and BOD removal efficiency is 58.01%. This optimization results in an improved quality of gambier industry wastewater, reducing its negative environmental impact. These efforts are crucial to meet environmental regulatory standards established by the Indonesian government.


Author Biographies

Erda Rahmilaila Desfitri, Universitas Bung Hatta

Department of Renewable Energy Engineering Technology

Reni Desmiarti, Universitas Bung Hatta

Department of Chemical Engineering

Adinda Ratu Permata, Universitas Bung Hatta

Department of Chemical Engineering

Elizarni Elizarni, Vocational High School Padang

Department of Chemical Analysis

How to Cite
Desfitri, E. R., Desmiarti, R., Permata, A. R., & Elizarni, E. (2024). Optimization of Gambier Industry Wastewater Treatment Plant (WWTP) Performance: a Systematic Approach for Environmental Sustainability. Journal of Applied Agricultural Science and Technology, 8(2), 228-240. https://doi.org/10.55043/jaast.v8i2.253


  1. Abdel-Karim, A., El-Naggar, M. E., Radwan, E. K., Mohamed, I. M., Azaam, M., & Kenawy, E. R. (2021). High-Performance Mixed-Matrix Membranes Enabled by Organically/Inorganic Modified Montmorillonite for the Treatment of Hazardous Textile Wastewater. Chemical Engineering Journal, 405(February 2021), 126964. https://doi.org/10.1016/j.cej.2020.126964.
  2. Abdullahi, A. B., Siregar, A. R., Pakiding, W., & Mahyuddin. (2021). The Analysis of BOD (Biological Oxygen Demand) and COD (Chemical Oxygen Demand) Contents in the Water of Around Laying Chicken Farm. IOP Conference Series: Earth and Environmental Science, 788(1), 0–6. https://doi.org/10.1088/1755-1315/788/1/012155
  3. Agustina, E. B., & Yuniarto, A. H. P. (2022). Study of BOD, COD, and TSS Removal in Batik Industry Wastewater Using Electrocoagulation Method. JKPK (Jurnal Kimia dan Pendidikan Kimia), 7(2), 150. https://doi.org/10.20961/jkpk.v7i2.59977
  4. Badawi, A. K., & Zaher, K. (2021). Hybrid Treatment System for Real Textile Wastewater Remediation Based on Coagulation/Flocculation, Adsorption and Filtration Processes: Performance and Economic Evaluation. Journal of Water Process Engineering, 40, 101963. https://doi.org/10.1016/j.jwpe.2021.101963
  5. Bhat, A. P., & Gogate, P. R. (2021). Cavitation-Based Pre-Treatment of Wastewater and Waste Sludge for Improvement in the Performance of Biological Processes: A Review. Journal of Environmental Chemical Engineering, 9(2), 104743. https://doi.org/10.1016/j.jece.2020.104743.
  6. Dasgupta, M., & Yildiz, Y. (2016). Assessment of Biochemical Oxygen Demand as Indicator of Organic Load in Wastewaters of Morris County, New Jersey, USA. Journal of Environmental & Analytical Toxicology, 06(03), 1-3. https://doi.org/10.4172/2161-0525.1000378 https://www.researchgate.net/profile/Yusuf-Yildiz-3/publication/303948028_Assessment_of_Biochemical_Oxygen_Demand_as_Indicator_of_Organic_Load_in_Wastewaters_of_Morris_County_New_Jersey_USA/links/5764c17e08ae421c44835df8/Assessment-of-Biochemical-Oxygen-Demand-as-Indicator-of-Organic-Load-in-Wastewaters-of-Morris-County-New-Jersey-USA.pdf
  7. Du, H., & Amstad, E. (2020). Water: How does it influence the CaCO3 formation?. Angewandte Chemie International Edition, 59(5), 1798-1816. https://doi.org/10.1002/anie.201903662
  8. Fitri, H. M., Hadiwidodo, M., & Kholiq, M. A. (2016). Penurunan Kadar COD, BOD, Dan TSS Pada Limbah Cair Industri MSG (Monosodium Glutamat) Dengan Biofilter Anaerob Media Bio-Ball. Jurnal Teknik Lingkungan, 5(1), 1–10. http://ejournal-s1.undip.ac.id/index.php/tlingkungan.
  9. Hu, W., Tian, J., Li, X., & Chen, L. (2020). Wastewater Treatment System Optimization with an Industrial Symbiosis Model: A Case Study of a Chinese Eco-Industrial Park. Journal of Industrial Ecology, 24(6), 1338–1351. https://doi.org/10.1111/jiec.13020
  10. Irwan, I., Pitri, O. A., & Vitriani, U. (2022). Rural Community Resilience: Gambir Fluctuations as Main Livelihood in Kapur IX District Nagari Koto Bangun. JED (Jurnal Etika Demokrasi), 7(3), 409–415. https://doi.org/10.26618/jed.v%vi%i.8097
  11. Islam, M. R., & Mostafa, M. G. (2020). Characterization of textile dyeing effluent and its treatment using polyaluminum chloride. Applied Water Science, 10(119), 1-10. https://doi.org/10.1007/s13201-020-01204-4
  12. Jin, Q., & Kirk, M. F. (2018). pH as a Primary Control in Environmental Microbiology: 1. Thermodynamic Perspective. Frontiers in Environmental Science, 6(21), 1–15. https://doi.org/10.3389/fenvs.2018.00021
  13. Jobin, L., & Namour, P. (2017). Bioremediation in Water Environment: Controlled Electro-Stimulation of Organic Matter Self-Purification in Aquatic Environments. Advances in Microbiology, 07(12), 813–52. https://doi.org/10.4236/aim.2017.712064
  14. Keskin, B., Ağtas, M., Ormancı-Acar, T., Türken, T., I˙mer, D. Y., Ünal, S., …, & Koyuncu, I. (2021). Halloysite Nanotube Blended Nanocomposite Ultrafiltration Membranes for Reactive Dye Removal. Water Science and Technology, 83(2), 271–283. https://doi.org/10.2166/wst.2020.573
  15. Li, L., Liu, H., He, X., Lin, E., & Yang, G. (2020). Winter irrigation effects on soil moisture, temperature and salinity, and on cotton growth in salinized fields in Northern Xinjiang, China. Sustainability (Switzerland), 12(18). https://doi.org/10.3390/su12187573
  16. Liu, Z., Liu, Y., Kuschk, P., Wang, J., Chen, Y., & Wang, X., (2016). Poly aluminum chloride (PAC) enhanced formation of aerobic granules: Coupling process between physicochemical–biochemical effects. Chemical Engineering Journal, 284, 1127-1135. https://doi.org/10.1016/j.cej.2015.09.061.
  17. Liu, Y., Li, C., Lou, Z., Zhou, C., Yang, K., & Xu, X. (2021). Antimony removal from textile wastewater by combining PFS&PAC coagulation: Enhanced Sb (V) removal with presence of dispersive dye. Separation and Purification Technology, 275, 119037. https://doi.org/10.1016/j.seppur.2021.119037
  18. Ma, D., Yi, H., Lai, C., Liu, X., Huo, X., An, Z., …, & Yang, L. (2021). Critical Review of Advanced Oxidation Processes in Organic Wastewater Treatment. Chemosphere, 275, 130104. https://doi.org/10.1016/j.chemosphere.2021.130104.
  19. Mansor, E. S., Ali, H., & Abdel-Karim, A. (2020). Efficient and Reusable Polyethylene Oxide/Polyaniline Composite Membrane for Dye Adsorption and Filtration. Colloids and Interface Science Communications, 39(September), 100314. https://doi.org/10.1016/j.colcom.2020.100314.
  20. Meng, X., Wu, J., Kang, J., Gao, J., Liu, R., Gao, Y., …, & Hu, Y. (2018). Comparison of the Reduction of Chemical Oxygen Demand in Wastewater from Mineral Processing Using the Coagulation–Flocculation, Adsorption and Fenton Processes. Minerals Engineering 128(January), 275–283. https://doi.org/10.1016/j.mineng.2018.09.009.
  21. Menteri Lingkungan Hidup. (2014). KepMen LH nomor 5 / 2014. Peraturan Menteri Lingkungan Hidup Republik Indonesia Nomor 5 Tahun 2014, 1815, 81. https://toolsfortransformation.net/wp-content/uploads/2017/05/Permen-LH-5-2014-tentang-Baku-Mutu-Air-Limbah.pdf
  22. Padmaja, K., Cherukuri, J., & Reddy, M. A. (2020). A Comparative Study of the Efficiency of Chemical Coagulation and Electrocoagulation Methods in the Treatment of Pharmaceutical Effluent. Journal of Water Process Engineering, 34(February), 101153. https://doi.org/10.1016/j.jwpe.2020.101153.
  23. Purwati, H., Fachrul, M. F., & Hendrawan, D. I. (2019). The Study on the Self-Purification Based on BOD Parameter, Situ Gede Tangerang City, Banten Province. Journal of Physics: Conference Series, 1402(2), 1-7. https://doi.org/10.1088/1742-6596/1402/2/022101
  24. Sabelfeld, M., Streckwall, L., Xuan-Thanh, B., & Geißen, S. -U. (2022). Optimization Potentials for Wastewater Treatment and Energy Savings in Industrial Zones in Vietnam: Case Studies. Case Studies in Chemical and Environmental Engineering, 5(May), 0–4. https://doi.org/10.1016/j.cscee.2021.100169
  25. Sharma, S. K., Verma, D. S., Khan, L. U., Kumar, S., & Khan, S. B. (2018). Handbook of Materials Characterization. Handbook of Materials Characterization, September, 1–613. https://doi.org/10.1007/978-3-319-92955-2
  26. Sayekti, R. W., Haribowo R., Vivit, Y., & Prabowo, A. (2011). Studi Efektifitas Penurunan Kadar BOD, COD & NH3 Pada Limbah Cair Rumah Sakit dengan rotating biological contactor. Jurnal Teknik Pengairan: Journal of Water Resources Engineering, 2(2), 182–189. https://jurnalpengairan.ub.ac.id/index.php/jtp/article/view/134
  27. SNI [Standar Nasional Indonesia]. (2009a). SNI 6989.72-2009 Tentang Cara Uji Kebutuhan Oksigen Biokimia (Biochemical Oxygen Demand/BOD). Badan Standardisasi Nasional, 1–28. http://lib.atk.ac.id/index.php?p=show_detail&id=7810
  28. SNI [Standar Nasional Indonesia]. (2009b). SNI 6889.2-2009 Cara Uji Kebutuhan Oksigen Kimiawi (Chemical Oxygen Demand/COD) dengan Refluks Tertutup secara Spektrofotometri. Badan Standardisasi Nasional, 6989, 1–16. https://www.coursehero.com/file/114054078/SNI-Cara-uji-kebutuhan-oksigen-kimiawi-COD-dengan-refluks-tertutup-secara-spektrofotometriPDF/
  29. Sy, S., Sofyan, Ardinal, & Kasman, M. (2019). Reduction of Pollutant Parameters in Textile Dyeing Wastewater by Gambier (Uncaria Gambir Roxb) Using the Multi Soil Layering (MSL) Bioreactor. IOP Conference Series: Materials Science and Engineering, 546(2), 1-8. https://doi.org/10.1088/1757-899X/546/2/022032
  30. Tran, T. T. T., Kannoorpatti, K., Padovan, A., & Thennadil, S. (2021). Sulphate-Reducing Bacteria’s Response to Extreme Ph Environments and the Effect of Their Activities on Microbial Corrosion. Applied Sciences (Switzerland), 11(5), 1–19. https://doi.org/10.3390/app11052201
  31. Wang, H., Alfredsson, V., Tropsch, J., Ettl, R., & Nylander, T. (2013). Formation of CaCO3 Deposits on Hard Surfaces Effect of Bulk Solution Conditions and Surface Properties. ACS applied materials & interfaces, 5(10), 4035-4045. https://doi.org/10.1021/am401348v
  32. Yang, Q., Hu, C., Li, J., Yi, X., He, Y., Zhang, J., & Sun, Z. (2021). A separation and desalination process for farmland saline-alkaline water. Agriculture (Switzerland), 11(10). https://doi.org/10.3390/agriculture11101001