Analysis of the Chemical Content of Coconut Husk as a Raw Material for Furfural Production

##plugins.themes.academic_pro.article.main##

Dewi Arziyah
Anwar Kasim
Alfi Asben
Munzir Busniah

Abstract

Coconut-based production generates waste such as coconut husk, which contains up to 35% lignocellulose—a valuable raw material for furfural production. This study aimed to determine the impact of coconut maturity level and coconut husk section on the lignocellulose content in coconut husk. This study used a randomized group design with two factors: coconut maturity level and coconut husk section. The variables observed were moisture, extractive, cellulose, hemicellulose, and lignin contents. Analysis of Variance (ANOVA) was performed for data analysis, followed by Duncan's Multiple Range Test (DMRT). The coconut fruits used were immature and mature ones. This study analyzed the husk at the proximal end, equator, and distal end of the coconut fruit. The results show significant effects of coconut maturity level on the chemical composition of coconut husk at the three sections of the coconut, indicating coconut husk’s potential as a raw material for furfural production.

##plugins.themes.academic_pro.article.details##

Author Biographies

Dewi Arziyah, Andalas University

Doctoral Program in Agricultural Science, Agriculture Faculty

Anwar Kasim, Andalas University

Department of Agricultural Industrial Technology, Agricultural Technology Faculty

Alfi Asben, Andalas University

Department of Agricultural Industrial Technology, Agricultural Technology Faculty

Munzir Busniah, Andalas University

Department of Agrotechnology, Agriculture Faculty

How to Cite
1.
Arziyah D, Kasim A, Asben A, Busniah M. Analysis of the Chemical Content of Coconut Husk as a Raw Material for Furfural Production. J. appl. agricultural sci. technol. [Internet]. 2025Aug.24 [cited 2025Aug.28];9(3):413-24. Available from: https://www.jaast.org/index.php/jaast/article/view/393

References

  1. Zhao Y, Lu K, Xu H, Zhu L, Wang S. A critical review of recent advances in the production of furfural and 5-hydroxymethylfurfural from lignocellulosic biomass through homogeneous catalytic hydrothermal conversion. Renew Sustain Energy Rev 2021;139:110706. https://doi.org/10.1016/j.rser.2021.110706.
  2. Dutta S, De S, Saha B, Alam MI. Advances in conversion of hemicellulosic biomass to furfural and upgrading to biofuels. Catal Sci Technol 2012;2:20–25. https://doi.org/10.1039/C2CY20235B.
  3. Machado G, Leon S, Santos F, Lourega R, Dullius J, Mollman ME, et al. Literature Review on Furfural Production from Lignocellulosic Biomass. Nat Resour 2016;07:115–129. https://doi.org/10.4236/nr.2016.73012.
  4. Tursi A. A review on biomass: importance, chemistry, classification, and conversion. Biofuel Res J 2019;6:962–979. https://doi.org/10.18331/BRJ2019.6.2.3.
  5. Khemthong P, Yimsukanan C, Narkkun T, Srifa A, Witoon T, Pongchaiphol S, et al. Advances in catalytic production of value-added biochemicals and biofuels via furfural platform derived lignocellulosic biomass. Biomass Bioenergy 2021;148:106033. https://doi.org/10.1016/j.biombioe.2021.106033.
  6. Mujtaba M, Fraceto LF, Fazeli M, Fazeli M, Mukherjee S, Savassa S.M, et al. Lignocellulosic biomass from agricultural waste to the circular economy: a review with focus on biofuels, biocomposites and bioplastics. J Clean Prod 2023;402:136815. https://doi.org/10.1016/j.jclepro.2023.136815.
  7. Budiyantoro C, Yudhanto F. Comparative Analysis of Cellulose, Hemicellulose and Lignin on The Physical and Thermal Properties of Wood Sawdust for Bio-Composite Material Fillers. Rev Compos Matér Avancés 2024;34:109–116. https://doi.org/10.18280/rcma.340114.
  8. Jung S-J, Kim S-H, Chung I-M. Comparison of lignin, cellulose, and hemicellulose contents for biofuels utilization among 4 types of lignocellulosic crops. Biomass Bioenergy 2015;83:322–327. https://doi.org/10.1016/j.biombioe.2015.10.007.
  9. Yemiş O, Mazza G. Acid-catalyzed conversion of xylose, xylan and straw into furfural by microwave-assisted reaction. Bioresour Technol 2011;102:7371–7378. https://doi.org/10.1016/j.biortech.2011.04.050.
  10. Luo Y, Li Z, Li X, Liu X, Fan J, Clark JH, et al. The production of furfural directly from hemicellulose in lignocellulosic biomass: A review. Catal Today 2019;319:14–24. https://doi.org/10.1016/j.cattod.2018.06.042.
  11. Lee C, Wu T. A review on solvent systems for furfural production from lignocellulosic biomass. Renew Sustain Energy Rev 2021;137:110172. https://doi.org/10.1016/j.rser.2020.110172.
  12. Dashtban M, Gilbert A, Fatehi P. Production Of Furfural: Overview and Challenges. J Sci Technol For Prod Process J-FOR 2012;2:44–53. https://www.researchgate.net/publication/261051357_PRODUCTION_OF_FURFURAL_OVERVIEW_AND_CHALLENGES.
  13. Bodachivskyi I, Kuzhiumparambil U, Williams DBG. Towards furfural from the reaction of cellulosic biomass in zinc chloride hydrate solvents. Ind Crops Prod 2020;146:112179. https://doi.org/10.1016/j.indcrop.2020.112179.
  14. Liu C, Wei L, Yin X, Wei M, Xu J, Jiang J, et al. Selective conversion of hemicellulose into furfural over low-cost metal salts in a γ-valerolactone/water solution. Ind Crops Prod 2020; 147:112248. https://doi.org/10.1016/j.indcrop.2020.112248.
  15. Peng B, Ma CL, Zhang PQ, Wu CQ, Wang ZW, Li AT, et al.An effective hybrid strategy for converting rice straw to furoic acid by tandem catalysis via Sn-sepiolite combined with recombinant E. coli whole cells harboring horse liver alcohol dehydrogenase. Green Chem 2019;21:5914–5923. https://doi.org/10.1039/C9GC02499A.
  16. Lee CBT, Wu TY, Ting CH, Tan JK, Siow LF, Cheng CK, et al. One-pot furfural production using choline chloride-dicarboxylic acid based deep eutectic solvents under mild conditions. Bioresour Technol. Epub ahead of print 2018. https://doi.org/10.1016/j.biortech.2018.12.034.
  17. Barbosa BM, Colodette JL, Longue Júnior D, Gomes FJB, Martino DC. Preliminary Studies on Furfural Production from Lignocellulosics. J Wood Chem Technol 2014;34:178–190. https://doi.org/10.1080/02773813.2013.844167.
  18. Win DT. Furfural – Gold from Garbage. Fac Sci Technol Assumpt Univ Bangk Thail 2005;8:185–190. https://www.thaiscience.info/Journals/Article/AUJT/10290551.pdf.
  19. Pandiselvam R, Manikantan MR, Kothakota A, Rajesh GK, Beegum S, Ramesh SV. Engineering properties of five varieties of coconuts ( Cocos nucifera L.) for efficient husk separation. J Nat Fibers 2020;17:589–597. https://doi.org/10.1080/15440478.2018.1507863.
  20. Nogueira C, Padilha CE, de Sá Leitão AL, Rocha PM, Macedo GR, Santos ES. Enhancing enzymatic hydrolysis of green coconut fiber—Pretreatment assisted by tween 80 and water effect on the post-washing. Ind Crops Prod 2018;112:734–740. https://doi.org/10.1016/j.indcrop.2017.12.047.
  21. Subiyanto. Prospek Industri Pengolahan Limbah Sabut Kelapa. J Teknol Lingkung 2000;1:1–9. https://media.neliti.com/media/publications/159233-ID-prospek-industri-pengolahan-limbah-sabut.pdf.
  22. AOAC (ed). Official Methods of Analysis AOAC International. 18. ed., current through rev. 1, 2006. Gaithersburg, Md: AOAC Inc., 2005.
  23. Rezekinta FAG, Kasim A, Nazir N, Nur F. Utilization of mensiang (Actinoscorpus grosus L.) as a cellulose-rich material for furfural synthesis. J Litbang Ind 2021;11:117. https://doi.org/ 10.24960/jli.v11i2.7212.117-123.
  24. Nikhontha K, Krisanapook K, Imsabai W. Fruit Growth, Endocarp Lignification, and Boron And Calcium Concentrations In Nam Hom (Aromatic) Coconut During Fruit Development. J ISSAAS 2019;25:21–31. http://issaasphil.org/wp-content/uploads/2019/06/3.-Nikhontha-et-al.-2019.-Coconut-Fruit-Growth-and-shell-hardening-FINAL.pdf.
  25. Adeyi O. Proximate composition of some agricultural wastes in Nigeria and their potential use in activated carbon production. J Appl Sci Environ Manag 2010;14:55–58. https://doi.org/ 10.4314/jasem.v14i1.56490.
  26. Latif ABD, Brosse N, Ziegler-Devin I, Chrusiel L, Hasim R, Hussin M. A comparison of alkaline and organosolv lignin extraction methods from coconut husks as an alternative material for green applications. BioResources 2021;17:469–491. https://doi.org/10.15376/biores.17.1.469-491
  27. Ram M, Mondal MK. Comparative study of native and impregnated coconut husk with pulp and paper industry waste water for fuel gas production. Energy 2018;156:122–131. https://doi.org/10.1016/j.energy.2018.05.102
  28. Baeza J, Freer J. Chemical Characterization of Wood and Its Components. 2nd ed. New York: Marcel Dekker, 2001.
  29. Bajpai P. Biermann’s Handbook of Pulp and Paper. Amsterdam: Elsevier, 2018.
  30. Fengel D, Wegener G. Wood: Chemistry, Ultrastructure, Reactions. Yogyakarta: Gadjah Mada University Press, 1995.
  31. Lertwattanaruk P, Suntijitto A. Properties of natural fiber cement materials containing coconut coir and oil palm fibers for residential building applications. Constr Build Mater 2015;94:664–669. https://doi.org/10.1016/j.conbuildmat.2015.07.154
  32. Devi D, Astutik D, Cahyanto MN, et al. Lignin, Hemiselulosa, and Cellulose Contents of Zalacca Midrib in Physical, Chemical, and Biological Pretreatment. J Ilm Rekayasa Pertan dan Biosist 2019;7:273–282. https://doi.org/10.29303/jrpb.v7i2.148.
  33. Kondo Y, Arsyad M. Analisis Kandungan Lignin, Sellulosa, dan Hemisellulosa Serat Sabut Kelapa Akibat Perlakuan Alkali. INTEK J Penelit 2018;5:94. https://doi.org/10.31963/intek.v5i2.578.

Most read articles by the same author(s)