The Effect of Microwave Time and Power on the Tannin Extraction Process from Gambier (Uncaria gambir Roxb.) Using the Microwave Assisted Extraction (MAE) Method

##plugins.themes.academic_pro.article.main##

Fakhruzy Fakhruzy
Anwar Kasim
Alfi Asben
Aswaldi Anwar

Abstract

Dry gambier extract obtained from gambier plants contains tannins at relatively low levels. Tannins can be obtained by extracting dry gambier using water to achieve high yields within a relatively short processing time. This study aims to analyze the interaction between extraction time and microwave power in the tannin extraction process from gambier using the microwave-assisted extraction (MAE) method to maximize tannin yield.  The research method employed was a factorial design (AxB). Factor A was extraction time, consisting of five treatments (1; 2; 3; 4; and 5 minutes) and factor B was microwave power, consisting of five variations (180W; 300W; 450W; 600W and 850W). The results showed that the gambier extraction process using MAE demonstrated an interaction between extraction time and microwave power on the yield produced, but not on the tannin content. The most optimal temperature and power that can be used is 4 minutes at 600W microwave power with a yield of 44.66%. The treatment of temperature and microwave power in the gambier extraction process showed a significant interaction with the extract yield.

##plugins.themes.academic_pro.article.details##

Author Biographies

Fakhruzy Fakhruzy, Andalas University

Agriculture Faculty

Anwar Kasim, Andalas University

Agricultural Technology Faculty

Alfi Asben, Andalas University

Agricultural Technology Faculty

Aswaldi Anwar, Andalas University

Agriculture Faculty

How to Cite
1.
Fakhruzy F, Kasim A, Asben A, Anwar A. The Effect of Microwave Time and Power on the Tannin Extraction Process from Gambier (Uncaria gambir Roxb.) Using the Microwave Assisted Extraction (MAE) Method. J. appl. agricultural sci. technol. [Internet]. 2025May27 [cited 2025Jul.4];9(2):276-85. Available from: https://www.jaast.org/index.php/jaast/article/view/385

References

  1. BPS. Geografi dan topografi Kabupetan Agam Sumatera Barat 2023. https://agamkab.bps.go.id/indicator/153/33/1/topografi-wilayah.html.
  2. Namira CA. Ekstraksi Tanin dari Buah Balakka (Phyllanthus emblica) dengan Microwave Menggunakan Pelarut Aquadest: Pengaruh Daya Microwave, Waktu Ektraksi dan Jumlah Pelarut. Universitas Sumatera Utara, 2021. https://repositori.usu.ac.id/handle/123456789/33078
  3. Mutiar S, Kasim A, Emriadi E, Asben A. Studi awal tanin dari kulit kayu Acacia auriculiformis A. Cunn. ex Benth. dari hutan tanaman industri untuk bahan penyamak kulit. MKKP 2019;34:41. https://doi.org/10.20543/mkkp.v34i2.3967.
  4. Dhawale P, Sasikumar Kala V, Gadhave R, J. J, Supekar M, Thakur V, et al. Tannin as a renewable raw material for adhesive applications: a review. Materials Advances 2022;3. https://doi.org/10.1039/D1MA00841B.
  5. Li X, Basso MC, Fierro V, Pizzi A, Celzard A. Chemical modification of tannin/furanic rigid foams by isocyanates and polyurethanes. Maderas Ciencia y Tecnología 2012;14:257–65. http://dx.doi.org/10.4067/S0718-221X2012005000001
  6. Efrina E, Kasim A, Anggraini T, Novelina N, Asben A. Karakterisasi busa kaku (rigid foam) yang dihasilkan dari bubuk gambir (Uncaria gambir Roxb.) dengan bubuk albumin. Indonesian Journal of Industrial Research 2019;9:127–33. https://www.neliti.com/id/publications/452507/karakterisasi-busa-kaku-rigid-foam-yang-dihasilkan-dari-bubuk-gambir-uncaria-gam
  7. Adeel S, Yameen M, Asghar F, Amin N, Ozomay M, Mirnezhad S. Extraction and Application of Plant-Based Tannins as Sources of Natural Colourants. Natural Dyes and Sustainability, Springer, Cham; 2023, p. 103–26. https://doi.org/10.1007/978-3-031-47471-2_6.
  8. Fraga-Corral M, García-Oliveira P, Pereira AG, Lourenço-Lopes C, Jimenez-Lopez C, Prieto MA, et al. Technological Application of Tannin-Based Extracts. Molecules 2020;25:614. https://doi.org/10.3390/molecules25030614.
  9. Bianchi S, Kroslakova I, Janzon R, Mayer I, Saake B, Pichelin F. Characterization of condensed tannins and carbohydrates in hot water bark extracts of European softwood species. Phytochemistry 2015;120:53-61. http://dx.doi.org/10.1016/j.phytochem.2015.10.006.
  10. Naima R, Oumam M, Hannache H, Sesbou A, Charrier B, Pizzi A, et al. Comparison of the impact of different extraction methods on polyphenols yields and tannins extracted from Moroccan Acacia mollisima barks. Industrial Crops and Products 2015;70:245-52. https://doi.org/10.1016/j.indcrop.2015.03.016.
  11. Arina MZI, Harisun Y. Effect of extraction temperatures on tannin content and antioxidant activity of Quercus infectoria (Manjakani). Biocatalysis and Agricultural Biotechnology 2019;19. https://doi.org/10.1016/j.bcab.2019.101104
  12. Chupin L, Maunu SL, Reynaud S, Pizzi A, Charrier B, Charrier-EL Bouhtoury F. Microwave assisted extraction of maritime pine (Pinus pinaster) bark: Impact of particle size and characterization. Industrial Crops and Products 2015;65:142–9. https://doi.org/10.1016/j.indcrop.2014.11.052.
  13. Pratini CE, P F. Ekstraksi Tanin dari Kulit Kayu Pinus dengan Bantuan Microwave:Pengaruh Daya Microwave, Jenis Pelarut dan Waktu ekstraksi. JIP UNTIRTA 2017;6:155. https://doi.org/10.36055/jip.v6i4.2429.
  14. Seabra IJ, Chim RB, Salgueiro P, Braga ME, Sousa HC de. Influence of solvent additives on the aqueous extraction of tannins from pine bark: potential extracts for leather tanning. Journal of Chemical Technology & Biotechnology 2017;93:1169-1182. https://doi.org/10.1002/jctb.5478.
  15. Kasim A, Asben A, Mutiar S. Kajian kualitas gambir dan hubungannya dengan karakteristik kulit tersamak. Majalah Kulit, Karet, Dan Plastik 2015;31:55–64. https://media.neliti.com/media/publications/151576-ID-kajian-kualitas-gambir-dan-hubungannya-d.pdf
  16. Delazar A, Nahar L, Hamedeyazdan S, Sarker SD. Microwave-Assisted Extraction in Natural Products Isolation. Natural Products Isolation, Humana Press; 2012, p. 89–115. https://doi.org/10.1007/978-1-61779-624-1_5.
  17. Chan C-H, Yusoff R, Ngoh G-C. Optimization of microwave-assisted extraction based on absorbed microwave power and energy. Chemical Engineering Science 2014:111:41-7. https://doi.org/10.1016/j.ces.2014.02.011
  18. Sengkhamparn N, Phonkerd N. Phenolic Compound Extraction from Industrial Tomato Waste by Ultrasound-Assisted Extraction. IOP Conf Ser: Mater Sci Eng 2019;639:012040. https://doi.org/10.1088/1757-899X/639/1/012040.
  19. Zainol MK, Yi WK, Zin ZM, Kamarudin KS, Abdullah MDD, Shin NK, et al. Effect of ethanol in ultrasonic assisted extraction technique on antioxidative properties of passion fruit (Passiflora Edulis) leaves. Malaysian Applied Biology, 2018;47:19–27. https://www.researchgate.net/publication/330409380_Effect_of_ethanol_in_ultrasonic_assisted_extraction_technique_on_antioxidative_properties_of_passion_fruit_Passiflora_edulis_leaves
  20. Santos-Buelga C, Gonzalez-Manzano S, Dueñas M, Gonzalez-Paramas AM. Extraction and isolation of phenolic compounds. Methods Mol Biol 2012;864:427–64. https://doi.org/10.1007/978-1-61779-624-1_17.
  21. Vo TP, Nguyen LNH, Thien Le NP, MAi TP, Nguyen DQ. Optimization of the ultrasonic-assisted extraction process to obtain total phenolic and flavonoid compounds from watermelon (Citrullus lanatus) rind. Current Research in Food Science 2022;5:2013–21. https://doi.org/10.1016/j.crfs.2022.09.021.
  22. Aznar-Ramos MJ, Razola-Díaz M del C, Verardo V, Gómez-Caravaca AM. Comparison between Ultrasonic Bath and Sonotrode Extraction of Phenolic Compounds from Mango Peel By-Products. Horticulturae 2022;8:1014. https://doi.org/10.3390/horticulturae8111014.
  23. Sekarsari S, Widarta IWR, Jambe AAGNA. Pengaruh Suhu Dan Waktu Ekstraksi Dengan Gelombang Ultrasonik Terhadap Aktivitas Antioksidan Ekstrak Daun Jambu Biji (Psidium guajava L.). Jurnal Ilmu Dan Teknologi Pangan (ITEPA) 2019;8:267–77. https://doi.org/10.24843/itepa.2019.v08.i03.p05.
  24. Zannou O, Pashazadeh H, Ghellam M, Redha A, Koca I. Enhanced ultrasonically assisted extraction of bitter melon (Momordica charantia) leaf phenolic compounds using choline chloride-acetic acid–based natural deep eutectic solvent: an optimization approach and in vitro digestion. Biomass Conv Bioref 2024;14:11491–503. https://doi.org/10.1007/s13399-022-03146-0.
  25. Djenar NS, Suryadi J. Microwave Power and pH Regulating Solution Effect on Characteristics of Pectin from Sukun Peel (Artocarpus altilis) using Microwave Assisted Extraction (MAE). Advances in Engineering Research 2020;198:124-8. https://www.researchgate.net/publication/348060655_Microwave_Power_and_pH_Regulating_Solution_Effect_on_Characteristics_of_Pectin_from_Sukun_Peel_Artocarpus_altilis_using_Microwave_Assisted_Extraction_MAE
  26. Adhiksana A. Perbandingan Metode Konvensional Ekstraksi Pektin Dari Kulit Buah Pisang Dengan Metode Ultrasonik. Journal of Research and Technology 2017;3:80–8. https://doi.org/10.55732/jrt.v3i2.276
  27. Swara IMAB, Puspawati GAKD, Widarta IWR. Pengaruh Waktu Ekstraksi dengan Metode Microwave Assisted Extraction (MAE) terhadap Aktivitas Antioksidan Ekstrak Daun Belimbing Wuluh (Averrhoa Bilimbi L.). ITEPA 2023;12:939. https://doi.org/10.24843/itepa.2023.v12.i04.p14.
  28. Lasunon P. Effect of Ultrasound-Assisted, Microwave-Assisted and Ultrasound-Microwave-Assisted Extraction on Pectin Extraction from Industrial Tomato Waste. Molecules 2022;27:1157. https://doi.org/10.3390/molecules27041157
  29. A.L.C.A. Method for the analysis of vegetable tanning materials. JALCA 493 1945. http://leatherchemists.org/index.php/view-methods/
  30. Iriany, Angkasa H, Namira CA. Ekstraksi Tanin dari Buah Balakka (Phyllanthus emblica L.) dengan Bantuan Microwave: Pengaruh Daya Microwave, Perbandingan Massa Kering Terhadap Jumlah Pelarut Etil Asetat. Jurnal Teknik Kimia USU 2021;10:8–12. https://doi.org/10.32734/jtk.v10i1.5318.
  31. Juodeikaitė D, Zilius M, Briedis V. Preparation of Aqueous Propolis Extracts Applying Microwave-Assisted Extraction. Processes 2022;10:1330. https://doi.org/10.3390/pr10071330.
  32. Rhazi N, Hannache H, Oumam MM, Sesbou A, Charrier B, Bouhtoury FCE. Green extraction process of tannins obtained from Moroccan Acacia mollissima barks by microwave: Modeling and optimization of the process using the response surface methodology RSM. Arabian Journal of Chemistry 2015;12:2668-84. https://doi.org/10.1016/j.arabjc.2015.04.032
  33. Setyowati SA, Arifin Z, Kusyanto K, Prayogo W. Pengaruh Daya Microwave Terhadap Kadar Tanin Pada Bubuk Pewarna Alami Dari Serbuk Gergaji Kayu Ulin. DISTILAT: Jurnal Teknologi Separasi 2024;10:425–33. https://doi.org/10.33795/distilat.v10i2.5110.
  34. Jusoh YMM, Idris AA, Khairuddin N, Zaidel DNA, Hashim Z, Mahmood NAN, et al. Effect of solvent ph, microwave power and extraction time on microwave-assisted extraction of hibiscus rosa-sinensis. Chemical Engineering Transactions 2018;63:541-6. http://dx.doi.org/10.3303/CET1863091
  35. Swara IMAB, Puspawati GAKD, Widarta IWR. Pengaruh Waktu Ekstraksi dengan Metode Microwave Assisted Extraction (MAE) terhadap Aktivitas Antioksidan Ekstrak Daun Belimbing Wuluh (Averrhoa Bilimbi L.). Itepa: Jurnal Ilmu Dan Teknologi Pangan 2023;12. https://doi.org/10.24843/itepa.2023.v12.i04.p14
  36. Afalobi HK, Mudalip SKA, Alara OR. Microwave-assisted extraction and characterization of fatty acid from eel fish (Monopterus albus). Beni-Suef University Journal of Basic and Applied Sciences 2018;7:465–70. https://doi.org/10.1016/j.bjbas.2018.04.003
  37. Amestiasih T, Pramono C, Widayati RW, Rizqi J, Lintang DC. Identifikasi Kandungan Tanin Ekstrak Buah Pare (Momordica charantia L) Menggunakan Metode Microwave Assisted Extraction (MAE). Prosiding Seminar Nasional Universitas Respati Yogyakarta 2023;5:17-21. https://prosiding.respati.ac.id/index.php/PSN/article/view/564/537
  38. Indrasari F, Buanasari B. The Effect of Solvent Ratio and Extraction Time on Antioxidant Activity and Flavonoid Concentration of Kedawung Leaf (Parkia Biglobosa) Through Microwave-Assisted Extraction. JBAT 2022;11:17–22. https://doi.org/10.15294/jbat.v11i1.33426.
  39. Singh R, Omre PK, Shahi NC. Microwave assisted extraction of bio-colorant from walnut hull. Int J Chem Stud 2020;8:1505–8. https://doi.org/10.22271/chemi.2020.v8.i5u.10511.

Most read articles by the same author(s)