Identification of Local Rice Genotypes from Deli Serdang, North Sumatera, Indonesia to Drought Stress Condition

##plugins.themes.academic_pro.article.main##

Irawati Chaniago
Noverina Chaniago
Irfan Suliansyah
Nalwida Rozen

Abstract

Regency of Deli Serdang in the Province of Sumatera Utara has high diversity of landrace rice that has adapted to various climatic and edaphic condition including drought. Studies on various local rice genotypes tolerant to drought is of important to be carried out. This will help plant breeders with germplasms for future breeding program. Polyethylene glycol (PEG) is a water-soluble compound with high osmotic pressure and unlikely to have specific interaction with biological chemicals. With these properties, PEG is often be used in studies of plant response to drought stress. The experiment reported here was aimed at determining rice genotypes, local to Regency of Deli Serdang, tolerant to drought. The experiment was carried out at Laboratory of Physiology and Glass House of Faculty of Agriculture, Universitas Islam Sumatera Utara, Medan from February to April 2020. A two-way factorial experiment was assigned in a completely randomized design (CRD) with 3 replicates. The first factor was 23 local rice genotypes plus 4 genotypes tolerant to drought and the second factor was the concentration of PEG 6000 i. e 0 and 20% (w/v). Observations included percent of germination, plant height, length and number of roots protruding from paraffin-wax layer, leaf chlorophyll content, seedling fresh and dry weight, index of tolerance, probability of resistance, and proline content. Data were analyzed with analysis of variance and mean separation of DNMRT at 5%. Results demonstrated that 6 local rice genotypes, Gemuruh, Ramos Merah, Arias, Sialus, Silayur, and Sirabut were resistant to drought stress under the experimental condition.

##plugins.themes.academic_pro.article.details##

References

  1. Abdullah, A. A., Ammar, M. H., & Badawi, A. T. (2010). Screening rice genotypes for drought resistance in Egypt. Journal of Plant Breeding and Crop Science 2 (7): 205-215.
  2. Armansyah, Anwar, A., Syarif, A., Yusniwati, & Febriamansyah, R. (2018). Exploration and Identification of the Indigenous Arbuscular Mycorrhizae Fungi (AMF) in the Rhizosphere of Citronella (Andropogon nardus L.) in the Dry Land Regions in West Sumatra Province, Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 8(1):85-92. DOI:10.18517/ijaseit.8.1.2363.
  3. Barunawati, N., Maghfoer, M. D., Kendarini, N. & Aini, N. (2016). Proline and specific root lenght as response to drought of wheat lines (Triticum aestivum L.). AGRIVITA Journal of Agricultural Science. 38(3):296-302.
  4. Bolanos, J. & Edmeades, G. (1996). The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crops Res., 48:65–80.
  5. Chaniago, I., Syarif, A., & Riviona, P. (2017). Sorghum seedling drought response: In search of tolerant genotypes. International Journal on Advanced Science, Engineering and Information Technology, 7(3):892-897. DOI:10.18517/ijaseit.7.3.1303.
  6. Dwiratna, S., Bafdal, N., Asdak, C., & Carsono, N. (2018). Study of Runoff Farming System to Improve Dryland Cropping Index in Indonesia. International Journal on Advanced Science, Engineering and Information Technology, 8(2):390-396. DOI:10.18517/ijaseit.8.2.3268.
  7. Inostroza, L., Acuña, H., & Tapia, G. (2015). Relationships between phenotypic variation in osmotic adjustment, water use efficiency, and drought tolerance of seven cultivars of Lotus corniculatus L. Chik. J. Agr. Res. 75: 3–12.
  8. Iriany, R.N.A., Takdir, M.M., Yasin, H.E. & Mejaya, M.J., (2005). Maize Genotype to drought stress. Journal of Indonesian Cereals Research Institute. 156-16l.
  9. Jatoi, S.A., Latif, M.M., Arif, M., Ahson, M., Khan, A., & Siddiqui, S. U. (2014). Comparative assessment of wheat landraces against polyethylene glycol simulated drought strees. Sci.Tech. Dev, 33:1-6.
  10. Jiang, W., & Lafitte, R. (2007). Ascertain the effect of PEG and exogenous ABA on rice growth at germination stage and their contribution to selecting drought tolerant genotypes. Asia J. Plant Sci. 6:684-687.
  11. Kumar, S., Dwivedi, S.K. Shing, S. S., Jha, S.K., Lekshmy, S. Elanchezhian, R. & Bhatt, B.P. (2014). Identification of drought tolerant rice genotype by analysing drought tolerance indices and morpho-physiological traits. SABRAO Journal of Breeding and Genetics, 46 :217-230.
  12. Kurnia, T. D., & Suprihati. (2016). Proline Sebagai Penanda Ketahanan Kekeringan Dan Salinitas Pada Gandum. 1–8.
  13. Larkunthod, P., Nounjan, N., Siangliw, J. L., Toojinda, T., Saanichton, J., Jongdee, B. & Thirakul, P. (2018). Physiological responses under drought stress of improved drought- Tolerant rice lines and their parents. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 46 (2), 679–687.
  14. Liu, F., Jensen, & Andersen, M. N. (2004). Drought stress effect on carbohydrate in soybeans leaves and pods during during early reproductive development: its implication in altering pod set. J. Field Crop Research, 86:1-13.
  15. Ludlow, M. & Muchow, R. (1990). A critical evaluation of traits for improving crop yields in water-limited environments. Adv. Agron. 43:107–153.
  16. Manavalan, L.P., Guttikonda, S.K., Tran, L.S.P. & Nguyen, H.T. (2009). Physiological and molecular approaches to improve drought resistance in soybean. Plant Cell Physiol. 50:1260-1276.
  17. Mejri M., Siddique, K.H.M., Saif, T., Abdelly, C. & Hesini, K. (2016). Comparative effect of drought duration on growth, photosynthesis, water relations, and solute accumulation in wild and cultivated barley species. Journal of Plant Nutrition and Soil Science 179:327-335.
  18. Muñoz, R. & Quiles, M. J. (2013). Water deficit and heat affect the tolerance to high illumination in hibiscus plants. Int. J. Mol. Sci., 14: 5432-5444; doi:10.3390/ijms14035432.
  19. Neeraja C.N., Hariprasad, A. S. Malathi, S., & Siddiq, E.A. (2005). Characterization of Tall Landraces of Rice (Oryza sativa L.) Using Gene-Derived Simple Sequence Repeats. Current Science.
  20. Nurmalasari, I. R. (2018). Amino Acid Proline Content of Two Black Rice Varieties Under Drought Condition. 4(1): 29–44.
  21. Rahim, D., Kalousek, P., Tahir, N., Vyhnánek, T., Tarkowski, P., Trojan, V., Abdulkhaleq, D., Ameen, A. H. & Havel, L. (2020). In Vitro Assessment of Kurdish Rice Genotypes in Response to PEG-Induced Drought Stress, Appl. Sci., 10, 4471; doi:10.3390/app10134471.
  22. Rahmadianti, F., Violita, P., & Eka, I. L. (2017). Respon Pertumbuhan dan Kandungan Asam Askorbat Beberapa Varietas Padi (Oryza sativa) Terhadap Cekaman Kekeringan. Journal Biosains 1(2): 81-89.
  23. Robin, A. H. K., Uddin, Md. J., & Bayazid. K. N. (2015). Polyethylene Glycol (PEG)-Treated Hydroponic Culture Reduces Length and Diameter of Root Hairs of Wheat Varieties. Agronomy, 5:506-518; doi:10.3390/agronomy5040506.
  24. Sabar, M. & Arif, M. (2014). Phenotypic response of rice (Oryza sativa) genotypes to variable moisture stress regimes. Int. J. Agric. Biol. 16:32–40.
  25. Sharifi, P., Amirnia, R., Majidi, E., Hadi, H., Roustaii, M. & Nakhoda, B. (2012). Relationship between drought stress and some antioxidant enzymes with cell membrane and chlorophyll stability in wheat lines. Afr. J. Microbiol. Res. 6: 617–623.
  26. Singh, B., Mai-Kodomi, Y., & Terao, T. (1999). A simple screening method for drought tolerance in cowpea. Indian J. Genet. Plant Breed., 59:211–220.
  27. Suardi, D. (2001). Kajian metode skrining padi tahan kekeringan, Buletin Agrobio, 3(2): 67-73.
  28. Sujinah & Jamil, A. (2016). Mekanisme Respon Tanaman Padi terhadap Cekaman, Iptek Tanaman Pangan. 11(1):1-8.
  29. Sulistyo, R., Yunus, A., & Nandariyah. (2016). Keragaman padi Ciherang M2 hasil radiasi Gamma pada stres kekeringan. Agrotech Res J. 5 (1):19-23.
  30. Taiz, L. & Zeiger, E. (2006). Plant physiology. Sinauer Associates Inc. Publisher. Massachusetts. 781p.
  31. Yang, L., Tingbo, J., Fountain, J. C., Scully, B. T., Lee, R. D., Kemerait, R. C., Chen, S., & Guo, B. (2014). Protein Profiles Reveal Diverse Responsive Signaling Pathways in Kernels of Two Maize Inbred Lines with Contrasting Drought Sensitivity. Int. J. Mol. Sci. 15:18892-18918; doi:10.3390/ijms151018892.
  32. Zivcak M., Brestic, M., & Sytar, O. (2016). Osmotic adjustment and plant adaptation to drought stress, In: MA Hossain, SH Wani, S Bhattacharjee, DJ Burnitt, and LAP Tran (Eds). Drought Stress Tolerance in Plants Vol 1. Springer International Publishing Switzerland pp 105-143.