Analysis Bio-oil of Pyrolysis Production Process from Corn Cobs
##plugins.themes.academic_pro.article.main##
Abstract
Corn cobs are converted into bio-oil through pyrolysis using a simple pyrolysis apparatus at temperatures ranging from 300 to 400°C. This study evaluates the efficiency of the pyrolysis system, characterizes the compounds in corn cob bio-oil, and analyzes the economic viability of the method. The methods include the raw materials preparation (through drying and size reduction), development of bio-oil production equipment, implementation of pyrolysis and condensation processes, purification of the resulting bio-oil, compound analysis of the bio-oil, performance evaluation of the equipment, and engineering economic analysis. The successful production of high-quality bio-oil depends heavily on the precise and careful installation of all system components, including the pyrolysis reactor, smoke pipe, tar catcher, condenser, coil pipe, outlet pipe, liquid smoke container, water drum, and combustion furnace. The tool has a production capacity ranging from 0.89 to 0.96 kg per hour, with a coefficient of determination of 97.94%, and produced a yield of 32% to 34%. The bio-oil derived from corn cobs contained several compounds, including acetic acid, methyl ester, decenal, methyl 9,9-dideutero-octadecanal, phenol, 1-octanol, 2-butyl, 2-heptadecanone, myristaldehyde, octadecane, 1-chloro, and 1,9-tetradecadiene. The basic operating cost of the equipment is Rp 18,509.28 per kilogram, with a break-even point (BEP) of 238.43 kg per year. The basic production cost represents the minimum selling price required to achieve profitability. Biomass pyrolysis is a crucial thermal conversion technique with significant industrial and economic potential.
##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
References
- Putranto A, Ng ZW, Hadibarata T, Aziz M, Yeo JYJ, Ismadji S, et al. Effects of pyrolysis temperature and impregnation ratio on adsorption kinetics and isotherm of methylene blue on corn cobs activated carbons. S Afr J Chem Eng 2022;42:91–7. https://doi.org/10.1016/j.sajce.2022.07.008.
- Syahrir M, Mahyati M. Pengolahan Limbah Tongkol Jagung Menjadi Asap Cair dengan Metode Pirolisis Lambat. INTEK: Jurnal Penelitian 2019;6:69–74. https://doi.org/10.31963/intek.v6i1.1209.
- Saragih, Benny Winson Maryanto Setyowati, Nanik, Prasetyo Nurjanah U. Optimasi Lahan Pada Sistem Tumpang Sari Jagung Manis. Jurnal Agroqua 2019;17:115–25. https://doi.org/10.32663/ja.v.
- Shariff A, Syairah N, Aziz M, Ismail NI, Abdullah N. Corn Cob as a Potential Feedstock for Slow Pyrolysis of Biomass 2016;27:123–37. https://doi.org/10.21315/jps2016.27.2.9.
- Amrullah S, Octaviananda C. Karakterisasi Alat Pirolisis Asap Cair Menggunakan Variasi Limbah Tongkol Jagung Dan Ampas Tebu. Jurnal Teknologi Pertanian 2023;12:1–10. https://doi.org/10.32520/jtp.v12i1.2548.
- Darajat Z, Munira M, Septiani M, Aladin A. Pengaruh Ukuran Partikel Bahan dan Waktu Penahanan Pada Pirolisis Lambat Limbah Tongkol Jagung Menjadi Bioarang. Journal of Chemical Process Engineering 2021;6:96–102. https://doi.org/10.33536/jcpe.v6i2.933.
- Ohliger A, Förster M, Kneer R. Torrefaction of beechwood : A parametric study including heat of reaction and grindability. Fuel 2013;104:607–13. https://doi.org/10.1016/j.fuel.2012.06.112.
- Novita SA, Santosa, Nofialdi, Andasuryani, Fudholi A. Efficient Bio-Oil Production from Coconut Shells Using Parabolic Solar Pyrolysis. International Journal of Sustainable Development and Planning 2023;18:3745–55. https://doi.org/10.18280/ijsdp.181206.
- Bello SI, Uthman TO, Surgun S, Sakoto AM. Urea enhances the yield and quality of bio-oil produced from corncob through pyrolysis. Αγαη 2025;15:37–48. https://doi.org/10.1038/s41598-025-86800-7.
- Domazetovska S, Strezov V, Filkoski R V., Kan T. Exploring the Potential of Biomass Pyrolysis for Renewable and Sustainable Energy Production: A Comparative Study of Corn Cob, Vine Rod, and Sunflower. Sustainability (Switzerland) 2023;15. https://doi.org/10.3390/su151813552 https://research-management.mq.edu.au/ws/portalfiles/portal/294308894/289183971.pdf.
- Abatyough MT, Ajibola VO, Agbaji EB, Yashim ZI. Properties of Upgraded Bio-oil from Pyrolysis of Waste Corn Cobs. Journal of Sustainability and Environmental Management 2022;1:120–8. https://doi.org/10.3126/josem.v1i2.45348.
- Zhao Z, Jiang Z, Xu H, Yan K. Selective Production of Phenol-Rich Bio-Oil From Corn Straw Waste by Direct Microwave Pyrolysis Without Extra Catalyst 2021;9:1–9. https://doi.org/10.3389/fchem.2021.700887.
- Jerzak W, Acha E, Li B. Comprehensive Review of Biomass Pyrolysis: Conventional and Advanced Technologies, Reactor Designs, Product Compositions and Yields, and Techno-Economic Analysis. Energies 2024;17:1–31. https://doi.org/10.3390/en17205082
- Inayat A, Ahmed A, Tariq R, Waris A, Jamil F, Ahmed SF, et al. Techno-Economical Evaluation of Bio-Oil Production via Biomass Fast Pyrolysis Process: A Review. Front Energy Res 2022;9:1–9. https://doi.org/10.3389/fenrg.2021.770355.
- Novita SA, Fudholi A, Doktoral P, Pertanian I, Andalas U, Studi P, et al. www.agroteknika.id 2021;4:53–67. https://doi.org/10.32530/agroteknika.v4i1.105.
- Novita SA, Santosa S, Nofialdi N, Andasuryani A, Fudholi A. Performance Test of Coconut Shell Grinding Machine For Pyrolysis Process. Journal of Applied Agricultural Science and Technology 2024;8:65–77. https://doi.org/10.55043/jaast.v8i1.211.
- Xin X, Dell K, Udugama IA, Young BR, Baroutian S. Transforming biomass pyrolysis technologies to produce liquid smoke food flavouring. J Clean Prod 2020:125368. https://doi.org/10.1016/j.jclepro.2020.125368.
- Hoang Pham LK, Vi Tran TT, Kongparakul S, Reubroycharoen P, Ding M, Guan G, et al. Data-driven prediction of biomass pyrolysis pathways toward phenolic and aromatic products. J Environ Chem Eng 2020:104836. https://doi.org/10.1016/j.jece.2020.104836.
- Gani A, Rozan M, Arkan D, Reza M, Desvita H. Case Studies in Chemical and Environmental Engineering Proximate and ultimate analysis of corncob biomass waste as raw material for biocoke fuel production. Case Studies in Chemical and Environmental Engineering 2023;8:100525. https://doi.org/10.1016/j.cscee.2023.100525.
- Ajimotokan HA, Saidu NS, Aladodo MA, Oladosu KO, Samuel OD, Abdulrahman KO, et al. Combustion characteristics of Torrefied corncob and African birch wood residues at higher heating rate 2025;27. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=4795443.
- Arenas CE, Montoya JH, Rincón GV, Zapata-Benabithe Z, Gómez-Vásquez R, Camargo-Trillos DA. A new approach to obtain kinetic parameters of corn cob pyrolysis catalyzed with CaO and CaCO3. Heliyon 2022;8. https://doi.org/10.1016/j.heliyon.2022.e10195.
- Binh QA, Nguyen VH, Kajitvichyanukul P. Influence of pyrolysis conditions of modified corn cob bio-waste sorbents on adsorption mechanism of atrazine in contaminated water. Environ Technol Innov 2022;26:102381. https://doi.org/10.1016/j.eti.2022.102381.
- Singh S, Sawarkar AN. Pyrolysis of corn cob: Physico-chemical characterization, thermal decomposition behavior and kinetic analysis. Chemical Product and Process Modeling 2020;16:117–27. https://doi.org/10.1515/cppm-2020-0048.
- Singh S, Patil T, Tekade SP, Gawande MB, Sawarkar AN. Studies on individual pyrolysis and co-pyrolysis of corn cob and polyethylene: Thermal degradation behavior, possible synergism, kinetics, and thermodynamic analysis. Science of the Total Environment 2021;783:147004. https://doi.org/10.1016/j.scitotenv.2021.147004.
- Klaas M, Greenhalf C, Ouadi M, Jahangiri H, Hornung A, Briens C, et al. The effect of torrefaction pre-treatment on the pyrolysis of corn cobs. Results in Engineering 2020;7:100165. https://doi.org/10.1016/j.rineng.2020.100165.
- Ceranic M, Kosanic T, Djuranovic D, Kaludjerovic Z, Djuric S, Gojkovic P, et al. Experimental investigation of corn cob pyrolysis. Journal of Renewable and Sustainable Energy 2016;8. https://doi.org/10.1063/1.4966695.
- Novita SA, Santosa S, Nofialdi N, Andasuryani A, Fudholi A, Azril A, et al. Parabolic dish solar pyrolysis for bio-oil production: performance and energy analysis. Journal of Medicinal and Pharmaceutical Chemistry Research 2024;6:89–110. https://doi.org/10.48309/jmpcr.2024.423505.1030 https://jmpcr.samipubco.com/article_183498_3d52b39dbd7cec2986c287d9ddb81be2.pdf.
- Zeng Z, Tian X, Wang Y, Cui X, Zhang Q, Dai L, et al. Microwave-assisted catalytic pyrolysis of corn cobs with Fe-modified Choerospondias axillaris seed-based biochar catalyst for phenol-rich bio-oil. J Anal Appl Pyrolysis 2021;159:105306. https://doi.org/10.1016/j.jaap.2021.105306.
- Irawan B, Rusdianasari, Hasan A. Pyrolysis Process of Fatty Acid Methyl Ester (FAME) Conversion into Biodiesel. International Journal of Research in Vocational Studies (IJRVOCAS) 2021;1:01–10. https://doi.org/10.53893/ijrvocas.v1i2.21 https://journal.gpp.or.id/index.php/ijrvocas/article/view/21.
- Bow Y, Hasan A, Rusdianasari R, Zakaria Z, Irawan B, Sandika N. Biodiesel from Pyrolysis Fatty Acid Methyl Ester (FAME) using Fly Ash as a Catalyst. Proceedings of the 5th FIRST T1 T2 2021 International Conference (FIRST-T1-T2 2021) 2022;9:175–81. https://doi.org/10.2991/ahe.k.220205.030 https://www.atlantis-press.com/proceedings/first-t1-t2-21/125970342.
- Novita SA, Santosa, Nofialdi, Andasuryani, Fudholi A, Putera P, et al. Performance and Characteristics of Bio-Oil from Pyrolysis Process of Rice Husk. IOP Conf Ser Earth Environ Sci 2022;1097:012019. https://doi.org/10.1088/1755-1315/1097/1/012019 https://iopscience.iop.org/article/10.1088/1755-1315/1097/1/012019/pdf.
- Novita SA, Effy Djinis M, Melly S, Kembaryanti Putri S. Processing Coconut Fiber and Shell to Biodiesel. Int J Adv Sci Eng Inf Technol 2014;4:386. https://doi.org/10.18517/ijaseit.4.5.440 http://repository.ppnp.ac.id/124/1/Processing%20Coconut%20Fiber%20and%20Shell%20to%20Biodiesel.pdf.
- Brigagão GV, Araújo O, de Medeiros JL, Mikulcic H, Duic N. A techno-economic analysis of thermochemical pathways for corncob-to-energy: Fast pyrolysis to bio-oil, gasification to methanol and combustion to electricity. Fuel Processing Technology 2019;193:102–13. https://doi.org/10.1016/j.fuproc.2019.05.011.
- Sobek S, Werle S. Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel 2020;261:116459. https://doi.org/10.1016/j.fuel.2019.116459.