Fast Pyrolysis of Biomass with a Concentrated Solar Power: a Review

##plugins.themes.academic_pro.article.main##

Sri Aulia Novita
Santosa Santosa
Nofialdi Nofialdi
Andasuryani Andasuryani
Ahmad Fudholi
Perdana Putera

Abstract

Indonesia's biomass energy potential is estimated at around 49,810 MW and is very adequate for the development go renewable energy. An example of a biomass conversion technique is pyrolysis which converts biomass into bio-oil. The optimum temperature for the pyrolysis process is 300-600 0C. Parameters that affect the pyrolysis process such as pretreatment of the material, moisture content and particle size of the material, the composition of biomass compounds, the effect of temperature, heating rate, gas flow rate, type of pyrolysis, and pyrolysis reactor. This is a thermochemical technique in which biomass waste is converted into solid fuel (char), producer gas (syngas), and liquid (bio-oil) without oxygen in a reactor. This article contains a comprehensive review of biomass conversion techniques to bio-oil using the solar energy-based fast pyrolysis method. Furthermore, the exposure used was based on the publication source, year, origin country, research methodology, and focus area. Most research has been empirical and mainly focused on fast pyrolysis and its influencing factors. There are several studies, information, and research recommendations described in this article.

##plugins.themes.academic_pro.article.details##

Author Biographies

Sri Aulia Novita, Andalas University

Doctoral Student Agricultural Science Program

Santosa Santosa, Universitas Andalas

Faculty of Agricultural Technology

Nofialdi Nofialdi, Universitas Andalas

Faculty of Agriculture

Andasuryani Andasuryani, Universitas Andalas

Faculty of Agricultural Technology

Ahmad Fudholi, University Kebangsaan Malaysia

Solar Energy Research Institute

Perdana Putera, University of Nottingham

Department of Electrical and Electronics Engineering

How to Cite
Novita, S. A., Santosa, S., Nofialdi, N., Andasuryani, A., Fudholi, A. ., & Putera, P. . (2022). Fast Pyrolysis of Biomass with a Concentrated Solar Power: a Review. Journal of Applied Agricultural Science and Technology, 6(2), 180-191. https://doi.org/10.55043/jaast.v6i2.62

References

  1. Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., & Olazar, M. (2014). Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel, 128, 162-169. https://doi.org/10.1016/j.fuel.2014.02.074
  2. Basu, P. (2010). Biomass Gasification and Pyrolisis: practical design and theory. Academic press. ISBN 978-0-12-374988-8
  3. Bridgwater, A. V. (2003). Renewable fuels and chemicals by thermal processing of biomass. Chemical engineering journal, 91(2), 87-102. https://doi.org/10.1016/S1385-8947(02)00142-0
  4. Chueh, W. C., Falter, C., Abbott, M., Scipio, D., Furler, P., Haile, S. M., & Steinfeld, A. (2010). High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria. Science, 330 (6012), 1797-1801. https://www.science.org/doi/10.1126/science.1197834
  5. Chintala, V., Kumar, S., Pandey, J. K., Sharma, A. K., & Kumar, S. (2017). Solar thermal pyrolysis of non-edible seeds to biofuels and their feasibility assessment. Energy Conversion and Management, 153, 482–492. https://doi.org/10.1016/j.enconman.2017.10.029
  6. Czernik, S., & Bridgwater, A. V. (2004). Overview of applications of biomass fast pyrolysis oil. Energy & fuels, 18(2), 590-598. https://pubs.acs.org/doi/10.1021/ef034067u
  7. Demiral, I., Eryazici, A., & Şensöz, S. (2012). Bio-oil production from pyrolysis of corncob (Zea mays L.). Biomass and Bioenergy, 36, 43–49. https://doi.org/10.1016/j.biombioe.2011.10.045
  8. Demirbas, A. (2004). Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues. Journal of analytical and applied pyrolysis, 72(2), 243-248. https://doi.org/10.1016/j.jaap.2004.07.003
  9. Giwa, A., Yusuf, A., Ajumobi, O., & Dzidzienyo, P. (2019). Pyrolysis of date palm waste to biochar using concentrated solar thermal energy: Economic and sustainability implications. Waste Management, 93, 14–22. https://doi.org/10.1016/j.wasman.2019.05.022
  10. Huang, A. N., Hsu, C. P., Hou, B. R., & Kuo, H. P. (2018). Production and separation of rice husk pyrolysis bio-oils from a fractional distillation column connected fluidized bed reactor. Powder Technology, 323, 588–593. https://doi.org/10.1016/j.powtec.2016.03.052
  11. Jiang, J. A., Huang, T. L., Hsiao, Y. T., & Chen, C. H. (2005). Maximum Power Tracking for Photovoltaic Power Systems. Journal of Applied Science and Engineering, 8(2), 147-153. https://doi.org/10.6180/jase.2005.8.2.07
  12. Ji-lu, Z. (2007). Bio-oil from fast pyrolysis of rice husk: Yields and related properties and improvement of the pyrolysis system. Journal of Analytical and Applied Pyrolysis, 80(1), 30-35. https://doi.org/10.1016/j.jaap.2006.12.030
  13. Joardder, M. U. H., Halder, P. K., Rahim, M. A., & Masud, M. H. (2017). Solar pyrolysis: Converting waste into asset using solar energy. In Clean Energy for Sustainable Development: Comparisons and Contrasts of New Approaches. Elsevier Inc. https://doi.org/10.1016/B978-0-12-805423-9.00008-9
  14. Kato, Y., Enomoto, R., Akazawa, M., & Kojima, Y. (2016). Characterization of Japanese cedar bio-oil produced using a bench-scale auger pyrolyzer, SpringerPlus, 5(1), 1-11. https://doi.org/10.1186/s40064-016-1848-7
  15. King, D. L., Murray, A. T., Gonzalez, S., Boyson, W. E., & Galbraith, G. M. (2005). Array Performance Characterization and Modeling Method for Real-Time System Performance Analysis. 1–3. https://www.osti.gov/servlets/purl/1494237
  16. Li, Z., Wang, L., Hays, T. S., & Cai, Y. (2008). Dynein-mediated apical localization of crumbs transcripts is required for Crumbs activity in epithelial polarity. The Journal of cell biology, 180(1), 31-38. https://doi.org/10.1083/jcb.200707007
  17. Madadi, M., & Abbas. A. (2017) Lignin Degradation by Fungal Pretreatment: A Review. J Plant Pathol Microbiol, 8 (398). https://doi.org/10.1016/j.jaap.2014.07.012
  18. Mohan, D., Pittman Jr, C. U., & Steele, P. H. (2006). Pyrolysis of wood/biomass for bio-oil: a critical review. Energy & fuels, 20(3), 848-889. https://pubs.acs.org/doi/10.1021/ef0502397
  19. Mondal, S., Mondal, A. K., Chintala, V., Tauseef, S. M., Kumar, S., & Pandey, J. K. (2018). Thermochemical pyrolysis of biomass using solar energy for efficient biofuel production: a review. Biofuels, 12(2), 125-134. https://doi.org/10.1080/17597269.2018.1461512
  20. Monnerie, N., Gan, P. G., Roeb, M., & Sattler, C. (2020). Methanol production using hydrogen from concentrated solar energy. International Journal of Hydrogen Energy, 45(49), 26117-26125. https://doi.org/10.1016/j.ijhydene.2019.12.200
  21. Morales, S., Miranda, R., Bustos, D., Cazares, T., & Tran, H. (2014). Solar biomass pyrolysis for the production of biofuels and chemical commodities. Journal of Analytical and Applied Pyrolysis, 109, 65–78. https://doi.org/10.1016/j.jaap.2014.07.012
  22. Ndukwu, M. C., Horsfall, I. T., Ubouh, E. A., Orji, F. N., Ekop, I. E., & Ezejiofor, N. R. (2021). Review of solar-biomass pyrolysis systems: Focus on the configuration of thermal-solar systems and reactor orientation. Journal of King Saud University - Engineering Sciences, 33(6), 413-423. https://doi.org/10.1016/j.jksues.2020.05.004
  23. Novita, S. A., Djinis, M. E., Melly, S., & Putri, S. K. (2014). Processing Coconut Fiber and Shell to Biodiesel. International Journal on Advanced Science, Engineering and Information Technology, 4(5), 386. https://doi.org/10.18517/ijaseit.4.5.440
  24. Nzihou, A., Flamant, G., & Stanmore, B. (2012). Synthetic fuels from biomass using concentrated solar energy–a review. Energy, 42 (1), 121-131. https://doi.org/10.1016/j.energy.2012.03.077
  25. Ohliger, A., Förster, M., & Kneer, R. (2013). Torrefaction of beechwood: A parametric study including heat of reaction and grindability. Fuel, 104, 607–613. https://doi.org/10.1016/j.fuel.2012.06.112.
  26. Piatkowski, N., Wieckert, C., Weimer, A. W., & Steinfeld, A. (2011). Solar-driven gasification of carbonaceous feedstock—a review. Energy & Environmental Science, 4(1), 73-82. https://pubs.rsc.org/en/content/articlelanding/2011/ee/c0ee00312c
  27. Pozzobon, V., Salvador, S., & Bézian, J. J. (2016). Biomass gasification under high solar heat flux: Experiments on thermally thick samples. Fuel, 174, 257-266. https://doi.org/10.1016/j.fuel.2016.02.003
  28. Sen, A. (2008). Violence, Identity and Poverty. Journal of Peace Research, 45(1), 5–15. https://doi.org/10.1177/0022343307084920
  29. Sobek, S., & Werle, S. (2020). Kinetic modelling of waste wood devolatilization during pyrolysis based on thermogravimetric data and solar pyrolysis reactor performance. Fuel, 261(August 2019), 116459. https://doi.org/10.1016/j.fuel.2019.116459
  30. Soltani, N., Bahrami, A., Pech-Ganul, M. I., dan Gonzalez, L. A. (2015). Review on the Physicochemical Treatments of Rice Husk for Production of Advanced Materials. Chemical Engineering Journal, 264, 899-935. https://doi.org/10.1016/j.cej.2014.11.056
  31. Vassilev, S. V., Baxter, D., Andersen, L. K., & Vassileva, C. G. (2010), An overview of the chemical composition of biomass, Fuel, 89(5) 913–933, https://doi.org/10.1016/j.fuel.2009.10.022
  32. Weldekidan, H., Strezov, V., Li, R., Kan, T., Town, G., Kumar, R., He, J., & Flamant, G. (2020). Distribution of solar pyrolysis products and product gas composition produced from agricultural residues and animal wastes at different operating parameters. Renewable Energy, 151, 1102-1109. https://doi.org/10.1016/j.renene.2019.11.107
  33. WikiPedia (2022). Pengertian Pirolisis. https://id.wikipedia.org/wiki/Pirolisis
  34. Zeng, K., Gauthier, D., Minh, D. P., Weiss-Hortala, E., Nzihou, A., & Flamant, G. (2017). Characterization of solar fuels obtained from beech wood solar pyrolysis. Fuel, 188, 285–293. https://doi.org/10.1016/j.fuel.2016.10.036
  35. Zeaiter, J., Azizi, F., Lameh, M., Milani, D., Ismail, H. Y., & Abbas, A. (2018). Waste tire pyrolysis using thermal solar energy: An integrated approach. Renewable Energy, 123, 44-51. https://doi.org/10.1016/j.renene.2018.02.030