The Effect of Indigenous AMF Applications on The Morpho-Physiological Characteristics of Two Varieties of Shallots on Drought Stress Conditions


Eka Susila
Fri Maulina
Aswaldi Anwar
Auzar Syarif
Agustian Agustian


One of the limiting conditions for shallot plants to grow optimally is dry land conditions. Indigenous AMF application is one way to overcome this condition. This study aimed to determine the effect of indigenous AMF application on the morpho-physiological characters of two shallot varieties which are sensitive and tolerant to drought stress conditions. The study was carried out for 6 months on a wirehouse and laboratory scale. The Experiment used a completely randomized design with two factors. The first factor was varieties of shallots, i.e. Brebes (Sensitive) and Kuning (Tolerant) varieties of shallots. The second factor was the application of indigenous AMF which consisted of 5 levels i.e. Glomus sp1, Glomus sp2, Glomus sp3, a mixed those three isolates and control treatment (without application of AMF). The morpho-physiological observation parameters included header dry weight, root weight, and leaf proline content. From the observations, it can be concluded that under stressed conditions, the leaf proline content of the sensitive variety accumulated higher in the header than the tolerant variety, because the tolerant variety was better able to produce higher root and header weights when adapting than the sensitive. AMF inoculation did not show significant differences with the treatment without AMF inoculation on leaf proline. However, there was a tendency that inoculation of a mix of AMF isolates (Glomus sp1+Glomus sp2+ Glomus sp3) decrease the proline content in the leaves, both in sensitive and tolerant varieties so that plants are more resistant to drought stress.


Author Biographies

Eka Susila, Politeknik Pertanian Negeri Payakumbuh

Magister Applied of Food Security

Fri Maulina, Politeknik Pertanian Negeri Payakumbuh

Food Crop Study Program

Aswaldi Anwar, Andalas University

Agroecotechnology Department

Auzar Syarif, Andalas University

Agroecotechnology Department

Agustian Agustian, Andalas University

Soil Biology Laboratory

How to Cite
Susila, E., Maulina, F. ., Anwar, A. ., Syarif, A. ., & Agustian, A. (2023). The Effect of Indigenous AMF Applications on The Morpho-Physiological Characteristics of Two Varieties of Shallots on Drought Stress Conditions. Journal of Applied Agricultural Science and Technology, 7(2), 186-196.


  1. Al-Hmoud, & Al-Momany. (2015). Effect of Four Mycorrhizal Products on Fusarium Root Rot on Different Vegetable Crops. J Plant Pathol Microb, 6(2), 1-5. https://doi:10.4172/2157-7471.1000255.
  2. Bates, L. S., Waldren, R. P., & Teare, I. D. (1973). Rapid Determination of Free Proline for Water Stress Studies. Plant Soils, 39, 205-207.
  3. Battaglia, M., Olvera-Carrillo, Y., Garciarrubio, A., Campos, F., & Covarrubias, A. A. (2008). The Enigmatic LEA Proteins and Other Hydrophilins. Plant Physiol, 148(1), 6–24.
  4. Battaglia, M., & Covarrubias, A. A. (2013). Late Embryogenesis Abundant (LEA) Proteins in Legumes. Front Plant Science, 4(190), 1-11.
  5. [BPS] Badan Pusat Statistik. (2017). Perkembangan Tanaman Sayuran Provinsi Tahun 2016.
  6. Das, K., & Roychodhury, A. (2014). Reactive Oxygen Species (ROS) and Response of Antioxidants as ROS-scavengers During Environmental Stress in Plants. Front. Environ. Sci., 2(53), 1-13.
  7. Ghosh, D., & Xu, J. (2014). Abiotic Stress Responses in Plant Roots: A Proteomics Perspective. Front. Plant. Sci., 5(6), 1-13.
  8. Gupta, A., Medina, A. R., & Delgado, A. I. C. (2020). The Physiology of Plant Responses to Drought. Science, 368(6488), 266-269.
  9. Huey, C. J., Gopinath, S. C. B., Uda, M. N. A., Zulhaimi, H. I., Jaafar, M. N., Kasim, F. H., & Yaakub, A. R. W. (2020). Mycorrhiza: a Natural Resource Assists Plant Growth Under Varied Soil Conditions. 3 Biotech, 10(5), 204.
  10. Khalil, A. M., Murchi, E. F., & Mooney, S. J. ( 2020). Quantifying the Influence of Water Deficit on Root and Shoot Growth in Wheat using X-ray Computed Tomography. AoB Plant, 12(5), plaa036.
  11. Khaliq, A., Perveen, S., Alamer, K. H., Ul Haq, M. Z., Rafique, Z., Alsudays, I. M., Althobaiti, A. T., Saleh, M. A., Hussain, S., & Attia, H. (2022). Arbuscular Mycorrhizal Fungi Symbiosis to Enhance Plant–Soil Interaction. Sustainability, 14(7840), 1-16.
  12. Kim, Y., Seo, C.-W., Khan, A. L., Mun, B.-G., Shahzad R., Ko J.-W., Yun, B.-W., Park, S.-K., & Lee, I.-J. (2018). Exo-ethylene Application Mitigates Waterlogging Stress in Soybean (Glycine max L.). BMC Plant Biol., 18(254), 1-16.
  13. Las, I., Agus, F., Nursyamsi, D., Husen, E., Sutriadi, T., Wiratno, Syahbudin, H., Jamil, A., Ritung, S., Mulyani, A., Hendrayana, R., Dariah, A., Suryani, E., Sulaiman, Y., Nurida, N. L., & Rejekiningrum, P. (2014). Road Map Penelitian dan Pengembangan Lahan Kering .Bogor: Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian. Retrieved from
  14. LibreTexts. (2022). General Biology. 31.3B: Mycorrhizae- The Symbiotic Relationship between Fungi and Roots.
  15. Prashad, R. & Chakraborty, D. (2019, April 19). Phosporous Basics : Understanding Phosporous Form and Their Cycling in the Soil.Retrieved from
  16. Pusat Penelitian dan Pengembangan Tanah. (2012). Petunjuk Teknis: Analisis Kimia. Tanah, Tanaman, Air dan Pupuk. Retrieved from
  18. Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., De Pascale, S., Bonini, P., & Colla, G. (2015). Arbuscular in mycorrhizal fungi act as biostimulants in horticultural crops, J. Sci. Hortic., 196, 91-108.
  19. Salisbury, F. B. & Ross, C. W . (1995). Plant Physiology. volume 3. Bandung. ITB Publisher. p 186-203
  20. Sané, A., Diallo, B., Kane, A., Ngom, M., Cissoko, M. & Sy, M. (2022). Response to Inoculation with Arbuscular Mycorrhizal Fungi of Two Tomato (Solanum lycopersicum L.) Varieties Subjected to Water Stress under Semi-Controlled Conditions. Agricultural Sciences, 13(6), 790-819. http//
  21. Samanhudi, S., Yunus, A., Pujiasmanto, B., Cahyani, V. R., & Lestariana, D. S. (2017). The Effect of Arbuscular Mycorrhiza and Organic Manure on Soybean Growth and Nutrient Content in Indonesia. Bulg. J. Agric. Sci., 23(4), 596–603.
  22. Sarkar, A., Asaeda, T., Wang, Q., & Rashid, M. H. (2015). Arbuscular Mycorrhizal Influences on Growth, Nutrient Uptake, and Use Efficiency of Miscanthus sacchariflorus Growing on Nutrient-Deficient River Bank Soil. Flora- Morphology, Distribution, Functional Ecology of Plants, 212, 46-54.
  23. Shahrajabian, M. H., Sun, W., & Cheng, Q. (2020). Chinese Onion, and Shallot, Originated in Asia, Medicinal Plants for Healthy Daily Recipes. J. Not. Sci. Biol., 12(2), 197-207.
  24. Susila, E., Anwar, A., Syarif, A., & Agustian. (2017). Population and Diversity of Indigenous Arbuscular Mycorrhizal Fungi from Shallots Rhizosphere in Different Altitudes in West Sumatra. International Journal on Advanced Science Engineering and Information Technology, 7(5): 1886-1893.
  25. Susila, E., Anwar, A., Syarif, A., & Agustian. (2018). Selection of six types of isolates of Indigenous Arbuscular Myccorhizal Fungi for growth, yields and essential oil content of shallots (Allium ascalonicum L.). Int J of Adv Res, 6(7), 856-864.
  26. Swasono, F. D. H. (2012a). Peran ABA dan Prolin dalam Mekanisme Adaptasi Tanaman Bawang Merah terhadap Cekaman Kekeringan di Tanah Pasir Pantai. Jurnal AgriSains, 4(5), 71-79.
  27. Swasono, F. D. H. (2012b). Karakteristik Fisiologi Toleransi Tanaman Bawang Merah terhadap Cekaman Kekeringan di Tanah Pasir Pantai. Jurnal AgriSains, 3(4), 88-103.
  28. Zulkarnain. (2018). Dasar-dasar Hortikultura Edisi 1 (4) Jakarta. Bumi Aksara. 336 hal.